Face Recognition in a Video Stream
In this tutorial, you'll learn how to recognize faces in a video stream. For recognition, you can use a ready-made database of faces from the Face SDK distribution package. The database includes the images of several famous people. Recognized faces are highlighted with a green rectangle. The name and image of a recognized person are displayed next to his/her face in a video stream. This tutorial is based on Face Detection and Tracking in a Video Stream and the corresponding project.
You can find the tutorial project in Face SDK: examples/tutorials/face_recognition_with_video_worker

Setting Up the Project
- In Face Detection and Tracking in a Video Stream, we set only two parameters of Face SDK (a path to Face SDK and a configuration file name for the
VideoWorkerobject). However, in this tutorial, we need to set several more parameters: we will add a path to the database, a configuration file name with a recognition method, and FAR. For convenience, we'll modify several files. Specify all the parameters in theFaceSdkParametersstructure. Infacesdkparameters.h, specify the path to thevideo_worker_lbf.xmlconfiguration file.
facesdkparameters.h
struct FaceSdkParameters
{
...
std::string videoworker_config = "video_worker_lbf.xml";
};
- Pass the
face_sdk_parametersstructure to the constructor of theWorkerobject.
viewwindow.h
class ViewWindow : public QWidget
{
Q_OBJECT
public:
explicit ViewWindow(
QWidget *parent,
pbio::FacerecService::Ptr service,
FaceSdkParameters face_sdk_parameters);
...
private:
...
std::shared_ptr<Worker> _worker;
pbio::FacerecService::Ptr _service;
};
viewwindow.cpp
ViewWindow::ViewWindow(
QWidget *parent,
pbio::FacerecService::Ptr service,
FaceSdkParameters face_sdk_parameters) :
QWidget(parent),
ui(new Ui::ViewWindow),
_service(service)
{
ui->setupUi(this);
...
_worker = std::make_shared<Worker>(
_service,
face_sdk_parameters);
...
};
worker.h
#include "qcameracapture.h"
#include "facesdkparameters.h"
...
class Worker
{
...
Worker(
const pbio::FacerecService::Ptr service,
const FaceSdkParameters face_sdk_parameters);
...
};
worker.cpp
Worker::Worker(
const pbio::FacerecService::Ptr service,
const FaceSdkParameters face_sdk_parameters)
{
pbio::FacerecService::Config vwconfig(face_sdk_parameters.videoworker_config);
...
}
- In this project, we're interested only in face detection in a video stream (creating a bounding rectangle) and face recognition. Please note that in the first project (
detection_and_tracking_with_video_worker), which you can use as a reference for this project, we also displayed anthropometric points and angles. If you don't want to display this info, you can just remove unnecessary visualization from the first project.
Creating the Database of Faces
First of all, we have to create a database of faces. To check face recognition, you can use the ready-made database from Face SDK. It includes images of three famous people (Elon Musk, Emilia Clarke, Lionel Messi). To check recognition, you should copy the database to the project root folder (next to a .pro file), run the project, open an image from the database, and point a camera at the screen. You can also add your picture to the database. To do this, you have to create a new folder in the database, specify your name in a folder name, and copy your picture to the folder (in the same way as other folders in the database).
Create a new
Databaseclass to work with the database: Add New > C++ > C++ Class > Choose... > Class name – Database > Next > Project Management (default settings) > Finish. Indatabase.h, include the headersQImageandQStringto work with images and strings andlibfacerec.hto integrate Face SDK.
database.h
#include <QImage>
#include <QString>
#include <facerec/libfacerec.h>
class Database
{
public:
Database();
}
- In
database.cpp, include the headersdatabase.handvideoframe.h(implementation of theIRawImageinterface, which is used byVideoWorkerto receive the frames). Also include necessary headers for working with the file system, debugging, exception handling, and working with files.
database.cpp
#include "database.h"
#include "videoframe.h"
#include <QDir>
#include <QDebug>
#include <stdexcept>
#include <fstream>
- In
database.h, add a constructor and set the path to the database. Specify theRecognizerobject to create templates, theCapturerobject to detect faces andfar. What is FAR? FAR is frequency that the system makes false accepts. False accept means that a system claims a pair of pictures are a match, when they are actually pictures of different individuals. Thevw_elementsvector contains the elements of theVideoWorkerdatabase. Thethumbnailsandnamesvectors contain the previews of images and names of people from the database.
database.h
class Database
{
public:
...
// Create a database
Database(
const std::string database_dir_path,
pbio::Recognizer::Ptr recognizer,
pbio::Capturer::Ptr capturer,
const float fa_r);
std::vector<pbio::VideoWorker::DatabaseElement> vw_elements;
std::vector<QImage> thumbnails;
std::vector<QString> names;
}
- In
database.cpp, implement theDatabaseconstructor, which was declared in the previous subsection. Thedistance_thresholdvalue means the recognition distance. Since this distance is different for different recognition methods, we get it based on theFARvalue using thegetROCCurvePointByFARmethod.
database.cpp
Database::Database(
const std::string database_dir_path,
pbio::Recognizer::Ptr recognizer,
pbio::Capturer::Ptr capturer,
const float fa_r)
{
const float distance_threshold = recognizer->getROCCurvePointByFAR(fa_r).distance;
}
- In the
database_dirvariable, specify the path to the database with faces. If this path doesn't exist, you'll see the exception"database directory doesn't exist". Create a newperson_idvariable to store the id of a person from the database (name of a folder in the database) and theelement_idvariable to store the id of an element in the database (an image of a person from the database). In thedirslist, create a list of all subdirectories of the specified directory with the database.
database.cpp
Database::Database(
const std::string database_dir_path,
pbio::Recognizer::Ptr recognizer,
pbio::Capturer::Ptr capturer,
const float fa_r)
{
...
QDir database_dir(QString::fromStdString(database_dir_path));
if (!database_dir.exists())
{
throw std::runtime_error(database_dir_path + ": database directory doesn't exist");
}
int person_id = 0;
int element_id_counter = 0;
QFileInfoList dirs = database_dir.entryInfoList(
QDir::AllDirs | QDir::NoDotAndDotDot,
QDir::DirsFirst);
}
Note: See more information about FAR and TAR values for different recognition methods in Identification Performance.
- In the loop
for(const auto &dir: dirs), process each subdirectory (data about each person). The name of a folder corresponds to the name of a person. Create a list of images inperson_files.
database.cpp
Database::Database(...)
{
...
for(const auto &dir: dirs)
{
QDir person_dir(dir.filePath());
QString name = dir.baseName();
QFileInfoList person_files = person_dir.entryInfoList(QDir::Files | QDir::NoDotAndDotDot);
}
}
- In the nested loop
for(const auto &person_file: person_files), process each image. If an image doesn't exist, the warning"Can't read image"is displayed.
database.cpp
Database::Database(...)
{
...
for(const auto &dir: dirs)
{
...
QFileInfoList person_files = person_dir.entryInfoList(QDir::Files | QDir::NoDotAndDotDot);
for(const auto &person_file: person_files)
{
QString path = person_file.filePath();
qDebug() << "processing" << path << "name:" << name;
QImage image(path);
if(image.isNull())
{
qDebug() << "\n\nWARNING: cant read image" << path << "\n\n";
continue;
}
if (image.format() != QImage::Format_RGB888)
{
image = image.convertToFormat(QImage::Format_RGB888);
}
VideoFrame frame;
frame.frame() = QCameraCapture::FramePtr(new QImage(image));
}
}
}
- Detect a face in an image using the
Capturerobject. If an image cannot be read, a face can't be found in an image or more than one face is detected, the warning is displayed and this image is ignored.
database.cpp
Database::Database(...)
{
...
for(const auto &dir: dirs)
{
...
QFileInfoList person_files = person_dir.entryInfoList(QDir::Files | QDir::NoDotAndDotDot);
for(const auto &person_file: person_files)
{
...
// Detect faces
const std::vector<pbio::RawSample::Ptr> captured_samples = capturer->capture(frame);
if(captured_samples.size() != 1)
{
qDebug() << "\n\nWARNING: detected" << captured_samples.size() <<
"faces on" << path << "image instead of one, image ignored\n\n";
continue;
}
const pbio::RawSample::Ptr sample = captured_samples[0];
}
}
}
- Using the
recognizer->processingmethod, create a face template, which is used for recognition.
database.cpp
Database::Database(...)
{
...
for(const auto &dir: dirs)
{
...
QFileInfoList person_files = person_dir.entryInfoList(QDir::Files | QDir::NoDotAndDotDot);
for(const auto &person_file: person_files)
{
...
// Create a template
const pbio::Template::Ptr templ = recognizer->processing(*sample);
}
}
}
- In the structure
pbio::VideoWorker::DatabaseElement vw_element, specify all the information about the database element that will be passed for processing to theVideoWorkerobject (element id, person id, face template, recognition threshold). Using thepush_backmethod, add an element to the end of the list.
database.cpp
Database::Database(...)
{
...
for(const auto &dir: dirs)
{
...
QFileInfoList person_files = person_dir.entryInfoList(QDir::Files | QDir::NoDotAndDotDot);
for(const auto &person_file: person_files)
{
...
// Prepare data for VideoWorker
pbio::VideoWorker::DatabaseElement vw_element;
vw_element.element_id = element_id_counter++;
vw_element.person_id = person_id;
vw_element.face_template = templ;
vw_element.distance_threshold = distance_threshold;
vw_elements.push_back(vw_element);
thumbnails.push_back(makeThumbnail(image));
names.push_back(name);
}
++person_id;
}
}
- In
database.h, add themakeThumbnailmethod to create a preview of a picture from the database.
database.cpp
class Database
{
public:
// Create a preview from a sample
static
QImage makeThumbnail(const QImage& image);
...
};
- In
database.cpp, implement the method usingmakeThumbnailto create a preview of a picture from the database, which will be displayed next to the face of a recognized person. Set the preview size (120 pixels) and scale it (keep the ratio if the image is resized).
database.cpp
#include <fstream>
...
QImage Database::makeThumbnail(const QImage& image)
{
const float thumbnail_max_side_size = 120.f;
const float scale = thumbnail_max_side_size / std::max<int>(image.width(), image.height());
QImage result = image.scaled(
image.width() * scale,
image.height() * scale,
Qt::KeepAspectRatio,
Qt::SmoothTransformation);
return result;
}
- In the .pro file, set the path to the database.
face_recognition_with_video_worker.pro
...
DEFINES += FACE_SDK_PATH=\\\"$$FACE_SDK_PATH\\\"
DEFINES += DATABASE_PATH=\\\"$${_PRO_FILE_PWD_}/base\\\"
INCLUDEPATH += $${FACE_SDK_PATH}/include
...
- In
facesdkparameters.h, set the path to the database and the value of FAR.
facesdkparameters.h
struct FaceSdkParameters
{
...
std::string videoworker_config = "video_worker_lbf.xml";
std::string database_dir = DATABASE_PATH;
const float fa_r = 1e-5;
};
Searching a Face in the Database and Displaying the Result
- In
facesdkparameters.h, set the path to the configuration file with the recognition method. In this project, we use the method 6.7 because it's suitable for video stream processing and provides optimal recognition speed and good quality. You can learn more about recommended recognition methods in Face Identification.
facesdkparameters.h
struct FaceSdkParameters
{
...
std::string videoworker_config = "video_worker_lbf.xml";
std::string database_dir = DATABASE_PATH;
const float fa_r = 1e-5;
std::string method_config = "method6v7_recognizer.xml";
};
Note: If you want to recognize faces in a video stream and you use low-performance devices, you can use the method 9.30. In this case, recognition speed is higher but recognition quality is lower compared to the method 6.7.
- In
worker.h, add the variablematch_database_indexto theFaceDatastructure. This variable will store the database element, if a person is recognized, or"-1"if a person is not recognized. AddDatabaseand a callback indicating that a person is recognized (MatchFoundCallback).
worker.h
#include "qcameracapture.h"
#include "facesdkparameters.h"
#include "database.h"
...
class Worker
{
public:
struct FaceData
{
pbio::RawSample::Ptr sample;
bool lost;
int frame_id;
int match_database_index;
FaceData() :
lost(true),
match_database_index(-1)
{
}
};
...
pbio::VideoWorker::Ptr _video_worker;
Database _database;
...
static void TrackingLostCallback(
const pbio::VideoWorker::TrackingLostCallbackData &data,
void* const userdata);
static void MatchFoundCallback(
const pbio::VideoWorker::MatchFoundCallbackData &data,
void* const userdata);
int _tracking_callback_id;
int _tracking_lost_callback_id;
int _match_found_callback_id;
};
- In
worker.cpp, override the value of the parameter in the configuration file so thatMatchFoundCallbackis received for non-recognized faces too. Set the parameters of theVideoWorkerobject: in the first tutorial, we didn't recognize faces, that's why we set only the value ofstreams_count. Since in this project we're going to recognize faces in a video stream we have to specify in the constructor the path to the configuration file with the recognition method, and also the values ofprocessing_threads_count(number of threads to create templates) andmatching_threads_count(number of threads to compare the templates). In this project, we use only one stream (a webcam connected to our PC). Connect the database: pass the path to the database, createCapturerto detect faces andRecognizerto create templates, and also specify theFARcoefficient. Using thesetDatabasemethod, set the database forVideoWorker. Using theaddMatchFoundCallbackmethod, add the recognition event handlerMatchFound.
worker.cpp
Worker::Worker(
const pbio::FacerecService::Ptr service,
const FaceSdkParameters face_sdk_parameters)
{
pbio::FacerecService::Config vwconfig(face_sdk_parameters.videoworker_config);
vwconfig.overrideParameter("not_found_match_found_callback", 1);
_video_worker = service->createVideoWorker(
vwconfig,
face_sdk_parameters.method_config,
1, // streams_count
1, // processing_threads_count
1); // matching_threads_count
_database = Database(
face_sdk_parameters.database_dir,
service->createRecognizer(face_sdk_parameters.method_config, true, false),
service->createCapturer("common_capturer4_lbf_singleface.xml"),
face_sdk_parameters.fa_r);
_video_worker->setDatabase(_database.vw_elements);
...
_match_found_callback_id =
_video_worker->addMatchFoundCallbackU(
MatchFoundCallback,
this);
}
- In the destructor
Worker::~Worker(), removeMatchFoundCallback.
worker.cpp
Worker::~Worker()
{
_video_worker->removeTrackingCallback(_tracking_callback_id);
_video_worker->removeTrackingLostCallback(_tracking_lost_callback_id);
_video_worker->removeMatchFoundCallback(_match_found_callback_id);
}
...
- In
MatchFoundCallback, the result is received in form of the structureMatchFoundCallbackDatathat stores the information about recognized and unrecognized faces.
worker.cpp
// static
void Worker::TrackingLostCallback(
const pbio::VideoWorker::TrackingLostCallbackData &data,
void* const userdata)
{
...
}
// static
void Worker::MatchFoundCallback(
const pbio::VideoWorker::MatchFoundCallbackData &data,
void* const userdata)
{
assert(userdata);
const pbio::RawSample::Ptr &sample = data.sample;
const pbio::Template::Ptr &templ = data.templ;
const std::vector<pbio::VideoWorker::SearchResult> &search_results = data.search_results;
// Information about a user - a pointer to Worker
// Pass the pointer
Worker &worker = *reinterpret_cast<Worker*>(userdata);
assert(sample);
assert(templ);
assert(!search_results.empty());
}
- When a template for a tracked person is created, it's compared with each template from the database. If the distance to the closest element is less than
distance_thresholdspecified in this element, then it's a match. If a face in a video stream is not recognized, then you'll see the message"Match not found". If a face is recognized, you'll see the message"Match found with..."and the name of the matched person.
worker.cpp
// static
void Worker::MatchFoundCallback(
const pbio::VideoWorker::MatchFoundCallbackData &data,
void* const userdata)
{
...
for(const auto &search_result: search_results)
{
const uint64_t element_id = search_result.element_id;
if(element_id == pbio::VideoWorker::MATCH_NOT_FOUND_ID)
{
std::cout << "Match not found" << std::endl;
}
else
{
assert(element_id < worker._database.names.size());
std::cout << "Match found with '"
<< worker._database.names[element_id].toStdString() << "'";
}
}
std::cout << std::endl;
}
- Save the data about the recognized face to display a preview.
worker.cpp
// static
void Worker::MatchFoundCallback(
const pbio::VideoWorker::MatchFoundCallbackData &data,
void* const userdata)
{
...
const uint64_t element_id = search_results[0].element_id;
if(element_id != pbio::VideoWorker::MATCH_NOT_FOUND_ID)
{
assert(element_id < worker._database.thumbnails.size());
// Save the best matching result for rendering
const std::lock_guard<std::mutex> guard(worker._drawing_data_mutex);
FaceData &face = worker._drawing_data.faces[sample->getID()];
assert(!face.lost);
face.match_database_index = element_id;
}
}
- Run the project. The recognition results will be displayed in the console. If a face is recognized, you'll see the face id and name of a recognized person from the database. If a face isn't recognized, you'll see the message
"Match not found".

Displaying the Preview of the Recognized Face from the Database
- Let's make our project a little nicer. We'll display the image and name of a person from the database next to the face in a video stream. In
drawfunction.h, add a reference to the database, because we'll need it when rendering the recognition results.
drawfunction.h
#include "database.h"
class DrawFunction
{
public:
DrawFunction();
static QImage Draw(
const Worker::DrawingData &data,
const Database &database);
};
- In
drawfunction.cpp, modify the functionDrawFunction::Drawby passing the database to it.
drawfunction.cpp
// static
QImage DrawFunction::Draw(
const Worker::DrawingData &data,
const Database &database)
{
...
const pbio::RawSample& sample = *face.sample;
QPen pen;
}
- Save the bounding rectangle in the structure
pbio::RawSample::Rectangle. Pass its parameters (x, y, width, height) to theQRect rectobject.
drawfunction.cpp
QImage DrawFunction::Draw(...)
{
...
// Save the face bounding rectangle
const pbio::RawSample::Rectangle bounding_box = sample.getRectangle();
QRect rect(bounding_box.x, bounding_box.y, bounding_box.width, bounding_box.height);
}
- Create a boolean variable
recognizedthat indicates whether a face is recognized or unrecognized. If a face is recognized, the bounding rectangle is green, otherwise it's red.
drawfunction.cpp
QImage DrawFunction::Draw(...)
{
...
const bool recognized = face.match_database_index >= 0;
const QColor color = recognized ?
Qt::green :
Qt::red; // Unrecognized faces are highlighted with red
// Display the face bounding rectangle
{
pen.setWidth(3);
pen.setColor(color);
painter.setPen(pen);
painter.drawRect(rect);
}
}
- Get a relevant image from the database for a preview by
face.match_database_index. Calculate the position of a preview in the frame.
drawfunction.cpp
QImage DrawFunction::Draw(...)
{
...
// Display the image from the database
if (recognized)
{
const QImage thumbnail = database.thumbnails[face.match_database_index];
// Calculate the preview position
QPoint preview_pos(
rect.x() + rect.width() + pen.width(),
rect.top());
}
- Draw an image from the database in the preview. Create the object
QImage face_previewthat is higher thanthumbnailontext_bar_height. The original preview image is drawn in the position (0, 0). As a result, we get a preview with a black rectangle at the bottom with the name of a person. Set the font parameters, calculate the position of a text and display the text in the preview.
drawfunction.cpp
QImage DrawFunction::Draw(...)
{
...
// Display the image from the database
if (recognized)
{
...
const int text_bar_height = 20;
QImage face_preview(
QSize(thumbnail.width(), thumbnail.height() + text_bar_height),
QImage::Format_RGB888);
face_preview.fill(Qt::black);
{
const int font_size = 14;
QPainter painter_preview(&face_preview);
painter_preview.drawImage(QPoint(0, 0), thumbnail);
painter_preview.setFont(QFont("Arial", font_size, QFont::Medium));
pen.setColor(Qt::white);
painter_preview.setPen(pen);
painter_preview.drawText(
QPoint(0, thumbnail.height() + text_bar_height - (text_bar_height - font_size) / 2),
database.names[face.match_database_index]);
}
}
}
- Draw
face_previewin the frame using thedrawPixmapmethod.
drawfunction.cpp
// static
QImage DrawFunction::Draw(...)
{
...
// Display the image from the database
if (recognized)
{
...
QPixmap pixmap;
pixmap.convertFromImage(face_preview);
painter.drawPixmap(preview_pos, pixmap);
}
}
- In
worker.h, add a method that returns the reference to the database.
worker.h
class Worker
{
public:
...
void getDataToDraw(DrawingData& data);
const Database& getDatabase() const
{
return _database;
}
};
- Modify the call to
DrawFunction::Drawby passing the database to it.
viewwindow.cpp
void ViewWindow::draw()
{
...
const QImage image = DrawFunction::Draw(data, _worker->getDatabase());
ui->frame->setPixmap(QPixmap::fromImage(image));
}
- Run the project. If a face is recognized, it will be highlighted with a green rectangle and you'll see a preview of an image from the database and a person's name. Unrecognized faces will be highlighted with a red rectangle.
