Face Recognition
General Incorrect Input Errors
Errors Occured When Uploading an Image Via API
- Invalid base64 string:
{
      "message": "image file is truncated (21 bytes not processed)"
}
- Image not transferred in base64:
{
      "message": "Expected value of type 'CustomBinaryType', found \"wrong_data\";
}
- No image transmitted:
{
      "message": "Sample Data is not valid",
      "code": "0xc69c44d4"
}
- Image uploaded in an incorrect format:
{
      "message": "Image decode failed"
}
- No faces detected in the image:
{
      "message": "No faces found",
      "code": "0x95bg42fd"
}
- Too big image size:
Bad Request (400)
Errors Occured in Filtering, Pagination and Sorting of Objects
- Transmitted filters are not in dictionary format:
{
      "message": "'str' object has no attribute 'keys'"
}
- Invalid field used for filtering:
{
      "message": "Cannot resolve keyword '' into field. Choices are: creation_date, id, info, last_modified, link_to_label, person, person_id, profile_groups, samples, workspace, workspace_id"
}
- Using an invalid field to filter sub-objects or a function over a field:
{
      "message": "Unsupported lookup '1' for UUIDField or join on the field not permitted."
}
- Negative value specified in the pagination fields:
{
      "message": "Negative indexing is not supported."
}
- Invalid field used for ordering:
{
      "message": "Cannot resolve keyword '' into field. Choices are: creation_date, id, info, last_modified, link_to_label, person, person_id, profile_groups, samples, workspace, workspace_id"
}
Remaining General Errors
- Object id given in a non-UUID format:
{
      "message": "“%(value)s” is not a valid UUID."
}
- Transmitted JSON did not pass validation by JSON schema:
{
      "message": "Invalid JSON request"
}
Face Detection
This query allows you to detect multiple faces in the image and get information about these faces (such as gender, age, emotions, liveness, mask presence, etc.). You can use this query if you're interested in detection result only, without saving it in your local database.
Attention! This query will be available until 2024.
detect(image: CustomBinaryType!pupils:
[EyesInput!] = null): JSON!
image: CustomBinaryType!: Base64 encoded image 
pupils: [EyesInput!]: To increase face detection accuracy, you can specify X and Y coordinates of eye pupuls.
- EyesInput!- leftPupil: PointInputType!- x: Float!
- y: Float!
 
- rightPupil: PointInputType!- x: Float!
- y: Float!
 
 
JSON! : API returns a sample in JSON format that contains the following parameters: 
- image: Base64 encoded image 
- id: The ordinal number of a face in the image 
- class: Object class name, e.g., face 
- template: A unique set of biometric features extracted from a face image. Templates are used to compare two face images and to determine a degree of similarity. 
- bbox: A rectangle that represents face bounds in the image. Bbox coordinates are calculated relative to the coordinates of the original image. 
- crop image: An image cropped according to the calculated coordinates of the face bbox. 
- keypoints: A collection of 21-point face landmarks pointing to the positions of face components. 
- rotation angles: Head rotation angles: Yaw (rotation along Y axis), pitch (rotation along Z axis) and roll (rotation along X axis).   algorithm allows to detect faces in the following range of angles: yaw [-60; 60], pitch [-60; 60], roll [-30; 30] 
- age: Age in years 
- gender: Possible gender of a person in the image 
- emotions: Facial emotions described in a form of confidence 
- liveness: Integrated liveness algorithm allows to detect if a person in the image is real or fake. 
- mask presence: The system can detect if a person in the image is wearing a mask. 
Example Request:
query{
  detect(image:"your image in Base64 format")
}
Example Response:
API returns the following result:
  {
  "data": {
    "detect": {
      "$image": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/CABEIAlgBwgMBIgACEQEDEQH/xAA1AAABBQEBAQAAAAAAAAAAAAAAAgMEBQYHAQgBAAMBAQEBAQAAAAAAAAAAAAABAgMEBQYH/9oADAMBAAIQAxAAAAD7LAAAAAAAAAAAABIKp8xyLl7N1gq7N8Hp6XMZmK6uqepe3xlXNZYUtBY5+TL083EWk1q7/P7C8OczafyNtDlZ7FTm2irKtNfgrPN/QfWPj7pGvN9CFJd9/mADQAAAAAAAAAAAAAAAAAAAAAAAAFOOXw+pyHm+rKqq3J8/ZcUzKNZrpchrTOTPqbtzJdsnWqkvqdN96rs89Nzu8TtNObkNVfUmPVdIiLqIGbs6Ghz2K0nfX+ck4b9E7X8r394fY/vHet+n474GmQAAAAAAAAAAAAAAAAAAAAGfTjfP9fSeZ7L2YgVee7keExpMlmN5S9kseCn2mfmXG0ssjqheO3HkXVy2rvLXTbTOanfj5FRavL49chlVc5gZ+yp6TEVUip81GdgZa9Gr6fVc+8rrfD52mP2TZcC7f6nizgNsAAAAAAAAAAAAAAAAAAIfy5ocB5/qN5VzI8/a7F9iaSppEWk747KG28mbNpnLs5qduaHYSoPt09Jn5+hlpSrv17p5OY57eZjDqpqjRQ6MTR7HM0VHr0Wocmx5GekcnR09krn+2zq467w3UvL67c452P1/EANMgAAAAAAAAAAAAADl3QfkLHpiZ6Rz3zvWf89j6y5BR4xuzTOz2jzXrrm7Yc7R6vDXn130+/vHkmn6BOvDL2l3I35qqVYKvJNXbIpZKDr6/LbFUPR4GW3Jc52rP5dHG4fRqezEsaSs1yJNPbkN1+qhNWisfsZNv3/5B6hpz/UpHkev4YAAAAAAAAAAAAFOPjfErvknl+1BmexLCEtDRYK1OPVntb2LoHPtyff6yQ8IEt9W2DPrxSacUCR6tQkq89YkX4hCXPE46JSVUaPYCdNVa1uL5Zzj6ViZ9HyJUfTXHVrlr3NvaZTa60rdMb6wy9nL+q+o/Jv1l6XjAHRygAAAAAAAAAHEO2fInP18/wAW9O5fQi0qWrh6y87jj00fc5sjNuvsu6YvvNOCc9PRe+nrfnnvohXjgker9Yjx0BlLvkjQrwaRQNvxaENtPtJxq22Sn8/8z+wuT8/bx3xqVrFFo6KLtz7j66+ROpXh9QAel44AAAAAAAAAGV+LPpb5B4vTk0dzmo2blm6V7PudXbY6vqQtwtxpaJD8Z9p5SV1KvUqaPT0Sl+Lpe+inKRwRHHfE2m5KAZS62qbQ4iabadbhtJcQzyNIQzkPH/qvhfN24nP38TfCVosD0Rx9qT+UdX9XwwCoAAAAAAAZD5H5NcZbzfarI0lrSbP6M5t2Hl6b2dBlClOx3mPONPEuusuieWhdypSHGvXPFVK1+OVCFe+CUn0BHgmaEeoT9aWhUhtxuab898hpQpDEMuNDj5jUQVXy8z07isb2UyVT3j9DfSPxx9hdnmugdnCAAAAAAYHfcIy2+cMluslwevXWNJ1C53u0z+j5eifJjyGpTzL9Jx5iQS642+59V4ukpxtypW6h2oW42q80odQqT755LEKQPxPvkvxC0qmkuJltoc8mmkuIQyw/HbZjyWKMjwj6L45N4W5y23mk/Z/xd9XdHD0ID0vKAAAAAAPmH6d+SeTu5NU2uV5+6Z1vnvVVWruqqzx0nS4csJkiNJqXHUOkrfZfaWtHtStxDlJ1aXrzSL8aT4rxHiVCbfivCkC0oSlfibaHPE2vFplobdQnGjyWVUViQwyv5b1rFlfPxNo6XVe7/OXas478B7PhgAAAAARPkn6w+SOD0ubY+9rlvpOv8z61j0W02PISmzIcUNJI514zpDuClhuXqixcSlxJDT77D95yHWn9MffHfaiOP+hHRLQqikrxOJ5JbVR0utxbKHWJrxA3Ne+NxRymW1AxFmRVTFPcxWuA4Ht3EytB1vg3Z8q+uFNO+188AAAAABV/I/1t8g+f6fIo3jWx1rpuJ3/J2SJTNS17xW7f0WXa31O3UWub9o2ul5bMm+92nz9tpXZ7LjGulb92gmvO6lUT95XK6d6s7NNalk9uvYjSzZq2I0t2cplS+o0fHsy32POchLNlTwLMqvv0uo13ReB2yjsbCJExi+B/S/AJvFdd5Tu5f2jcZXVep4gBUAAAAVHxb9r/ABBx+hzZca3s7dtKPQ8/U1SX8hUxoo86aUpTtZ0WS6Wwr+daH6boVr8+vdOpBm6prZO90mSt1N67WPk2K4KyZSI6CpLDDIIql553l8ptc27os707R1ny3V9ZuicHbbFbxwTm4QGNoOlR5vmvQh6s4HEe88oS4ZrM+439s73lHV+vzADbEAAACL8J/dnwty93P7yJcLTvVl4Z6+txI2e2llZ6Rntfqy1EPo3vL4tx1trjK3n1aryD+PRcoFzbk2nW3qJ+duazs3GZtZMIkxENxHIRaISkS2vZSwXNyFU11CVyGRrj1pXNpjW7bzNinYsRUpznoE3TH3n3RMo4+aYejoGvon6R+OvsXbmAOjkAAAAa+IPuT4ww6+eX0PXTt1+DZVuG9LCuK/m7GamyxBqzn8b0Hu4MjVd4w3X5mUm1esmX+kT+tRvwbQu1nkfRaVu5Xry11w06pu7esvNMI9VfVLmmhWTMbVfk1sdXkbmlz7KjGfQ2P9DxvnfSzed9PAu50u0dYDZZLL8fqfTN5xLqnL06Kwp7GsLKqtGtuf50z/QMwq0P2P8AOX0d08QBtzAAAMhkfnrU8+8/3Kfa5bol46xiSvLVpu5eyvGYbsdQ9ONbd6Leup5ttZnZ5nJ9D0K2eVp5XSctq40svn6c5MnNLOoasYa0mXtFcierZ9e1XOeS0m2577nIL2NfWlTJaRthyPK9/h7c3IOvwa96QOcdIkcXp5nc3dnGdTMmqM2nPHNsOPZna4mdOjd0+ZOla59oIczs8sAEUd5ms9vnGouonz/3FR1DBdN9P5yRLhzJJ7jUiRtiw8opK3ToV5dWnVN5x7QqagTn5G2DDi0qWo0liKi18qLn0S7qjuql6rsatzGsK+ZLmutOaYrjS1XNXFu2ysxE17ca5yJqfJdTMnLcMOPDlgeaRGcR7cYzlHbOaRu1soU/n9HrWpyWt9X5sA25TP6Cmz24dX30Dw/p8v0nm/TO/wA6PKgvw7iVXyk5y477nxLy2mVOKE2pxVS36vwEpW2m3DkQI0isetztPuaq1rNdbZV4oEuFLmrF+FLvJxYq4D1bTaXPWoyZXk1F9eQmhKmivGFxpaVMu3nCwu6w87W9i6vi9ba6zK6r2flwDfjIczxPilNrKnyvo8B0nBbq1AWw0sr+XWzI1nyYMh5zHIzlTIU25Ue+nrXvnqQ8YdYmo8GXU5axHYlgrn2USfpkmBZxQqVOwZu8fgWDh91l7XNS/PahPnqUzxKA9QNpjS46tMZyNNJfhTdMqug0MHn7bePdwY01eoor31fngDbmAA5tmdLReZ7+XvM5Ky6rCJY02/FeWVJac/RZSYMuolrZdcvuMuOXVNKpOo8U02xJi51W1K2Y6EW1LZk38yvstufxiXGagVk+nz3kXFJIVaSRCm7cq0OtXCG1NTfqPETQj1A/I7kdNEV2LNeWFXa7c8RuQc/oXcCZ7pzbKSHpeEANAAcmhbDI+f7dbS3+aw6dNm9HnOrjl2+btuLu0Empn1Fi9BfcTlRXhPKYUEhxl249rJ1cnmF087HriuVGZH2SZirW8dEZr1qZTZJM79Ddq5TjUS4blc9iQ3NM3GkpmlIShUptLYyN7FmvY4yxyfCm7c8axSnHebY0uz357oDv8cAAACHyDtebw7OaY7T5Dg9jXVjierhrLGtk8XoXtjRWclrJr5dRLeiuClORXHMt2IuochOIV8k96FiMu7B0XX5T05ts2YiiXWStATzZ7r6TTCdBl3lc7wF8iFNNJyUMA3W0JTWx4yzyN7HVeJT7pnaV9zjtcdW5Cu41mbhKu/xwDTEAAAAADL8b+jIHN28JV1Lnsb5L15rl750+nmZaXs6ksBWrkNyomLhrZK9iLRJWy6L1qQkmD5OWESJfRhUdnIWNlM6OL1xpTHEesoI62VoDHhUhttsTsdDQeNIS5cfjytsbfD9GsdcM705aunhANcAAAAAAAAAADlnU8POvIWZTHme346Jx3nWVPYS7Z2G+5fGRuS5BWK0k18m8Jgx606thsc+PHXVLEwSrhugbHoirmTm+x4xJ6hkLPPPZv1l5hplKmUJ8F3n7ZV9xvz9HnIX6HjgDQAAAAAAAAAAABn9BGT+f4dzT+d7avHfefpbmRZUXZSI0tyIdaTi+xKgWtl8/l757mHgqfTfewuc+nb0dzDSytSzjZU66mNkFudXN5/GrHsMviNrHL1SRQaXHBTilg3HkxmNMvMiSr0qFanNb7r4tQB2eYAAAAAAAAAAAAAAAByXCdp4vx+o8tiRxeghxKouxm1c5E1PiqmLW3/qOTZjv1drtyDUatvfdi0i2VUxFvm5M5OsXSqiNeU9kFmwt1lndY5Jx5PRSccj1INuK7HdJQKc+HntxO6bheld3legb8oAAAAAAAAAAAAAAADHDO9YjPfj0qMed7MxTS8dZEmHKmprsRRMtcJ1uVHUUqsnUzqxZpnd972VnndC8hxILVqikczq8kwbzHlecQTCmvEDdQj1Dcd5oEq8TU+PsXO+Gw07Tvf44BUgAAAAAAAAAAAAAAADbgHFcV9D8N5PSr5VRL4fTspNfLzqcMLJU9HdKkOMSQ89dcagRdA+1io3RHG+bTt361lp9u24ireQSy2+wU0240qUpCUm0eMgtLfukS+j53o3d5XoHRyAAAAAAAAAAAAAAAAAAAAGT1gq+Y6/uvEuL11T83N4u/RrqJEq0er5KLCRDmUpUqNJuJUuNLvJ9Q/ti0mS3Six5LGWjDMmPncVp2OtG47kVN1pqMDzETxqVoYfW+zz35IdnmgAAAAAAAAAAAAAAAAAAAAAAAHDu4/O+fRlK2jt+L158zNK5+nY2OKt4NhPzFuTdzKebc2cmskVNs9Vu6Yz0QfGOpjom3WURJpcZuJNOQYteidErfW5ujz2t6OXq9n573+MANAAAAAAAAAAAAAAAAAAAAAAAAHBu88Kz3+dq69o+L2LS0xqm9zIx1nnptr7n9jnp0e0wFxK2j+Xm1GhVRqauyk9auo9VFC2hU1fN3dXVQQsodVVt3sOnsgmdn5L3HXj6OB6XigAAAAAAAAAAAAAAAAAAAAAAAAAHCe7cAy6ON0mir+D2M9Hu4xVa4806dn1q5ehu8PJjToU3n0lVv/cKpG38xvgbFjJMD1NfROhOiqUCCXJIYs1WJD3aeSdU6vP6KB6HkgAAAAAAAAAAAAAAAAAAAAAAAAAHzp9FfM2PVhYdgz53r1zNmlaUsa+Zbo0WzI69cvxWy46tU28t2aSPrCG5NcHFfkyVMZ6XIcR5MiVWbcpx8zXt8Xo9ubthWWfpeOANAAAAAAAABlcuHUgAAAAAAAAAAAAAh/Mn0H858vdSpfTweqySnE69q3bdUjVugqn8s0q4C7BxOufnvp1z09wmC5PcagvS3CY0iTIqGJD7jzZcdUT5YwZbnoG7491T0PMmgb8oAAABgd982+f9Lb7P5o+h/I+11cJ/G/T/AJL2UAAAAAAAAAAAAEBzriO7w3nevDUtzn60POvIaVKW3VNW6SqNNxGVxHnnRtOPOuWFyVCjLkuNRn3XnLS5C3LT7rhDI8lKM8KTn6vIT9cutvYPV+h5diBeQABzfpGDjf13bYPPdeKu8tvw98AAAAAAAAAAAAx2k41j0ZylvazzfYguqdl+SR4PFuvCiplLbhM2TbcFU1Y4C5y2orkpdTFecfCK6+4Jpb3om/HPFLHj6Rx1KVI9Jjvt2NrQWGuOt0HP5vTxbYrbLo5Tn/QMM1ucD7dBGydhSB2MAAAAAAAAABkE+ZZIPM9mHGDLSEoCn3wJekAmsCjxIU1+gJfoB6sGLcAS1gNPgA4BUNoCBKgluPA288DU18Lyetw0x0EoO3gAKhtAA+AH/8QAJRAAAgICAgICAwEBAQAAAAAAAQIDBAAFERIGEBMgBzBAFBUW/9oACAEBAAECAf339js9xNcultrY3kk6pHHHi2K9gmsbRlsQO63Z2mUC7QuaTcVbH9zHbb+e9JLd27Y80k0UawKYJnArxJQhupbdBk0s9dq0G0jMVnRbrXbD+y5Z33kTvPenkmvloo1rLWSs8K4xVom1r3M2DxusimxTmh/0/wCWtPA8Gw0HkA/q2mw8g3HW5ckuGI52OwFiriYA9B4DBVg1UV4bMLNFclyw72mspkFlokn1trxryCCX+fe7rabhTtNr8EtxHaXEwNXaKf5PgOfFXi1gv5sMWBY5ZbM0+fFKILWumZHhpXtHuNdd/l3mz2V+WW1OsjtI7kYsnZTEa4ieFyhipw0oLebHHjWOy08rY4EwikjobWRGTX3dVsKNr+O5Y3+3Z55XlJJ5+ThIwvEAow14PhMPWqNet8XlZfiljsRyK2Rq0cc1mrSvRyB9db02yif+LzjfZdsu8jcyviRYmRwxxRRUasNMLGnWOvXFiS7FJWZZopnnjaAYkhELzQ15IpTLqLPie0/h/IG8qrsr8jM/WeZEjTIq8UKVoYo44KFXXQ1YqyVwhjnjaCaBoJ4p4rEbRuksaSoqZKEeCaKeha8S2n79jbsW9tsBhxjNJFEMREENWnrqvjlbx6HULQSssIRQV4YSRtC1aSrNrrOnn08tB67QyZXsdHrcxZXbS7OtN+78ibPaWZpuCZngi4hjo6HXeJ0dDHW6BQvHHHVfZHHBX4zGYHqz6694/stLJliKtZ5cK8j05PANh+3c3bEu4tVUleaWCNc1Op02gr11H1H6+OOOCGWSHcePbPUvDEzmU05RH4VtP2/ki9v7dOK20jwRZ454tSpL6XB+wg/oOHGFypvtDIleSZUNexA/hmw/W7eSXLMsjO0aRZ4p47GgxcGLg9D78eyOD9Thw+jk0XkegtRQS2YkmqD8a7b9fldnyW7qob1nETwvQxhfQwEYPuM449H2Rx9Dhw+5F8m1E0MmSrqJxJr7P6vyhsHGzeVo08S1lVV9D0MXB9x74zgj0fR9n6tlhPI9YmTBRp2/HF39X5RuRmSWJaNXS1osBHoYuD0PrwBnA+h9E/Y4cOHGG1r7itA0yaifxS3+maTaz7R41zxmnVVMXFIwYMAHoehnA98ej6OHD9D7Po42HJ18kpcvCw1VqGT9Hn1yJSth9NW1cMAXFxcGDF9DBg9jB7OH2cP6jhxsOONtFu6mgt3K+hfx1/0flW1cXls09aksQXFxcGLgwYPoMHrnnn6H6n6EY2Nhxsupu4p010wXwSx+jzyTcG++sXUxVQmLi4uDBgwYPQ9DB+g/rIbDhw5MPIoZV1Vuev8AjOb7nNxIBbk1aawQYmLiYuLgwYMHoYMGDOPXB/ScP1ONhw443MOwjcUZ/wAezfe4/kLW2rx69NekQTExMX0CCuD0MGKFHHUjr14444II4IOHD9GJxsOHL8fkdZ80UvjUi/fZjyNtq9QaNaipi4uWdjLvH3H/AFa29rXHxWUggqykfTjj2cPpsOHOfk/0iblsOHJR5DXlFJq8sJ+22zcZsZC/j8VYJiZt9rauLZj2NbZi81ilu9fu2vf7VkEgkWUOG7cli5kMhcyGRpp9ne30vkOw3TbZZ6u41nlXbGG8h20QzRPpH+23PkMjLXGmWJVzb2hANCuiu+N/85WVkmhnp3tfb11yGcMGDhw/yfI0hkeQT2L9rdWN7ZuRzW51qw0V1v8AgeLTbKrZOXY/IU6+LSeJv9tznmj2m1o00SrIwrUtfFF8fw2dZf8AH9hpIYJUrqjayTXzo4YMD2LFi5aWSea7Z5mLJWpa7Q1dNHqJtHBo7GnsaaCqpmXyuFhqpPCZfttF8wy0dXHqI+AiCPFIYN3fHS7St6b/AJdSGqsaRSq4YN27dizPI9pbNdKEetoaGvSRVwejhxw8XEi+WQk6+X8cT/a3nkGWI9QmtjbCUdGVxJ8nfv3ZpBKjDuJopY5UcEeiezs7PhVII0TFKnt25LElkZvXlEWxjhP4ss/a3mwS6mrSujZI6yRyieW7JvW3Em//APVL5JDd/wCnDYKlUMJixQqMr42Pj4MAZp9tLtf+7/6aPyBN3X2IlMnZCMGeRRXkrp+P7X2lG0h2sWhrgS5Keflu25sn8isZFU8Zo3tb4zrJ6q5TtdesSwmIQpKkofGDL1sy2i0nkFK7W8q8daGvcp7jX7uhsVZShXNwmzgC+KVh9/NV58ZjbJQ0UkbJvbckPjer3Or16X9LptX4TRtRbTU1GggaBUUV8iyTJsfCvWSO5I1PU67zWjutVBqZavjOt8g0NKzo560sZixMureggTxCL7b7Z+TyxR+NROOgiavZq7ChRq1qXxbbx1Y9bpKUM9r5JqtSGVOhFbEx8mzgrFHairVZzVluw39Z31mk+DaVp62u09WmkIRMlG0jmTxaxRu/Sd9nYnsZ45G+RhFKvFYrWqgSC5DeSxHd+aIpnc4+ENlfEOT4uAKI8fJVIJEs0ktt7MlOprqlf4wCoxs8hSzmmarZpTe98+5cRV01KNkQXBhDLJC9UQV6ZowU0gVFXhsOSYchxMOTkZHgwYQyskkDU5a7RNAsCRKCOGw4M3sXxUMpSeNt78lzaQdqEdNCYimDOCpTp8YToEVeMOMDkhOQ4mMZ8GR4PQ9FCvVkKfGF68YcOHBm2jniqQQp459PIRYW8tPIPUZTFwZxx146gcD2cbJC+cwYmNkwxMQj0PfHToV68YcOMSVOxx4asSrofpu8si1LXWIMYzGVIIODOPfHo4+NkhXIcQtkuHI8XFIwYM444+pJLYSmbfKuRCMaT6XVdNnHxAZcjMZUqQRg/Q2MZGdo8ixMbHyQRlcXAR9uT6OHGL5zHm/NOIx0BpR7YKmxBSnk5iMZUoQRgwYPocOHHyZsiESqpDrIoMLjFwfQ+iThw4xJb1Dm4WrHLHrU06fSZbmONW9nEyJkxcUjAfQI9HDjZO7mMQhABw2Orqpgdc44OH1yc55bGxsf1Xy2sKOIVrR/S412KTNRNcAaEoVxSCMH2IkMzPivXkjZH7yGVmkGV2jZTjYScOc4cbCSWOV8coY8qL9d1D3IQWQ2QtGyMpUgg888j02WMjaUlq80MglEjSW5hLGUZGRw+HCcPokszMxwZMUirK8ukX6+SRcyCzJI04iaJo2UqQVPrlTjZayOVnv2Ku3pWjN/oezt9zqtmktVkGA88k8kkkksWLGIWMBAbNRB9bteZGzaZTa4EMZiZGUgggg4M5JnG3P+u9pJvHdReNtbVu8NJ/yIrupgTDnPbknnk4xYkk5UWxPD61lP773XBrkmly5hyMo0ZUqRgPIKnsTl2o3j4rmta1K64a+nrRUGur69FGctnPOHOSWZmJxcq5GtaTWVFX9G61Owi0mW8bFKNGyMjAgg89ueRhHDIsZgeBa8URjGL7JOMee3bsSzMfUWPk66HWRR/quU4fHtlC2HExGjZGVgee3YFcHrjhRw+cJjYwGDDhPLHnDhJLEnBkIno0NGo/b5DE44xTGYyrc89uysCD7Gctgcej6BJY8nD7YnOT6GVVor+/yOOX1wMXIynvnlSrK3bty8yW2tfK917gtx2xIWY89sHpsOH0MGUVQfv3kdtcAIGRYvs4ziRZRJ8k1ua/8A7Bc/0iythpxZ/wBK3YLz2PlTFABxsOHAMXNPH/BZTZIuAcDExMXOHEgnnXYHZzbabZ/7lkFmXYLbhuRWHOG8u5i2mqREwBsOMT7iGjj/AIfI4BiE+kyMqcIaOxQteOS6ivqK2sgqCotFtZDrv8C05YAjVotXUq8cenw430gXXx/w+R15sTB6GIVIOA4+Opi+OIw2Pl+XlZXkmkgjjjXAPQzl2JPrlc1sQH8NiPb1wVJwYmKVPIIJxwwjmkQQoipIoj4EfyR4mDCecONhw5yciGkg/j8lpTorAjBi4M5DA84ws1+67Vdqu1O0fcHZq1Wsi4cPrnG9k5RhhT+ORN7ROI6kFSCTikEeuhheq2vOsXVx66OqkSpwcOH2cb0TkS6Wr/Ltamwq8o6MucnARgwYAFVREIP8/wABg+HpwQcOHD6YsSewzT0wP5t7rrsAZHRwysCuLi4gVVVQBx14IKlWDYxOHOWLMWTNdWrQ/wBG/wBRdrh4pVkWRXVkKYuJilSvtsY8nGxsJYsS7yM4Otq0av8AV5HLah7pMkySxvG6MpUqyMrh+7OzdizMWYu7yPI0gbW1KFX+v8hxV9isj4ssU8M8MqOjqysGDdu3YnsWZi8kks0kzSx58/jMg/s/IS2cLRbGOflJYLEM8Usciurh+/fv3LvJJK8007SMz2pLldfB4/7PPstI6nFaKxHcjmisQWorKWVnE/z/AD/O1h7MlqSy80k725plESQr4Sn9nnJsJKjIVGAq8diK1DZSytoWv9X+r/UbLTvYe283bAsSRLXTw/8At8zModXjaMp14wYrLYWz/q/0/wCgzmwZeVAAVUWONI0hHizf2eVNJhUqUMZj6leB6HpcGH0EVFUIsaoqIirFmlk/rY753HHUqUaMxlOnQIFCqoXosfQRqiqqoioq9YxSfWS/r8tvfjvfftuvsXYcFevRkKFCnQJ0CCMRiMJ0CKiqqIoUAAZCdDY/R5JtLL/j615hX8Quft8jltFs44C9GQp0ZOgjEaxhBGE69AgRUCqoXjjI8qvTm+/nVyzY/F2ebj8dN+3zKxOeAAoUAoYzGY+iqEVegXrwAFCdeqgAKw4TIzrLcUn211D/AMhWHn0H4io/sdt/YkHACgAKAylGj6dFQAAL16hOqqAqqnGH0MTIWq2K1r6/j31tc/KF38KTfs8juWTIAAAFHHXjqUKdOnUKAFCBeqoqdVDYMPoYmLkLo1W6j+/x42XT5bB+N4f13Z9jO4deFChRx146lSoTr0CdQOAoXqB74IwBfSZGwME8Fv1sNNJJotV+TW/Ff65pNtdbCGRlAGLgwDjrx1ChSvHHAXgej6C4foM5GKVblWrW4Z/ciQw5/8QAThAAAQMCAgYFCQYDBQcBCQAAAQACAxEhBBITIjFBUWEFECAycSMwQEJSgZGx0RRiocHh8AYzchUkJVDxJkNTdIKiwrIWRFVjc5Kjw9L/2gAIAQEAAz8B8/h8IKPOaTcxu1S4kEvc2GLm6g/VPnk0WEjfJepdTK0KZja4nFtw7dzWbfj/AKro3ByZoxppNxNVjpDlijEX75rHTfzXGn/1Cf0Qc7XkZX7ziVhmi7ox4AKEWZiC3wVBlz591K1qgaVcWnnHsU1KslbIP6VpHhpGiJOrwqsuCbm7oNQNycXkMN0JBlFSOStqPIJGwrFx7QCOY+qZLXSMkZxpVTM1oJS7kQP3+KeX/wB9wdaesBRyYyhic57TuCdFYPL2bwVFiI88bgeI4enhrS5xoBvTWVhwWu7e/cFJI9+gbmebmQjVUELs2MmMkvD1v0UzxosJG5rd1NikLzJiJdbeCaqNtw/W3Zdvx2/inHYQ39+9Ol72JcD4LD2rO8+A/VYBgyhzzyy/osNJs1K7g0fmsMCScRlPPRrDZq/amnf32N/NRNplnny+IP4gp9iJA8cU37LlJAG2rk4mjXNjA3kIPFBOx1vBBlhMTbZm/IqNraOe8VFg7YoZrsGS/eY630Usbqw4ir+G9TtBhxULZfGzgsPI/NhpSx23I7f9VPhyJHsMjR6ze83x4hUo+OVpUWKaAXAScPTYcJA6aZ2Vo/FTYirWHRxeq3ip5WZsS9sMAvrWr9U9rQ2GsbXbHka7v6RuTBeR2QbxmuVRtIowyuwu3/VSSd4vf42A9yldQBtvENClOq01PBgJp7yjtcS3xd9FE7/3eWUDaRUJrWgs6Nw19hkl2rEnvwwMZuDGE/lT8U4O7hr4MH1UzWassjRwt/8Awn1rp2k82ALZUG49XimOwQeLiiaJCCHU4gJxNpZK/wBFfkp8mVpjcBtGw/ByBYWyRUrxbVR0q0Bv9JUsRqw15UTHjJO0H3KJ+tBN7nXH6LF4aQNcKhQyvMrHiJ/H6rE4ItL25htqCoMXE0SSX48PFV9Kg6PhzSmr3dxg2uKlnlLsQ6rvUiGxv1Raz7ViHkE3aHOumx0kmka0gavIch+axOKqMPEWsJvJSrio4m6Wd2seJq4/vl8VGRXRiFpuXvNz7lhmNuHkcX2HwTAKMjLtw3fJY2Voq4Rx1sNgUjjV08gG/Lqfqgxpc2CN19spc+q6RndQljG8G3+SkYw535G8TRtfwWGzV+2w5/ZDy75JpOb7STz0WUfJO1aDSc8yOYZa14HeicGNuzuhESVcdmwNr81MwgCNzxtpc/mmvN2n8bfFCQUjlyu+CnjJJDsvK4+iFa5SOYTH2kiEg5bVE92bDz5X+y+x+KFDFiWhlfWpYqlHxvyg7HNO1TwCrC17N7Nx8OCaTpcA45x34DZw8FSJrJjmbv4hRzRiSJ2Zp9Ig6MaI6aXFP/lxD5nkpXYl7s+nxbrF9NWMcAm4ZwmncZMQ67WH5lHPlFZcRsDRsagK4jpGWrvYqpH/AMoCOLYHH8ll8o23GaS5PgEK6oOY+s67lveUdjI07NrOLjwCLXDM/RhZXZWzR0PrOZ9VBU5sTJKeF6fgmvdq4JrRxIr86LIcrsJK8UtmflCa/uYKNtt76oskq5nvoExjhkdvuR9E52Ga5ppbdxTw9xLnnk0LBvILg9hFzr0UgFYsTnbuzAEfG6cDrwtfz2j4rNcF0f8A3D6oG72D+uO60l43NlH3dqfvGanxCkYKVzsO0OUTmHRkc4ydqsXwk2Gu3f7+KbJIHxOMMwu1wO1F2JDMYRBitjZR3ZORU+El0bqA72Huu8FBjsMJ4HVB2jePRoujMLndeV9o2cSny4t72ymbFu78vqs8EMJG0No6Y8fmfop5XvMb6vd35XFR4UeSrJI71qXKzvrJ5WT2NwQzVcRI/wD7R9VfNK414b0aXpGPxTQKRtHiUTapKfTb7mojuxF34qQAEuijJ3H9FiREPJSyj7kBosdlGWN8I++WtUr3VlxzW8g5R1y1zu4kqagLWCniT+a0jtagcN4ssuGDdnKq1j5HZvumipLMp3axBT2szDK4bhSv4q+qHsI51Cmy0IDm8aXTXXa4tKBfV+o/c9tlKweWYJ2cd4UOIFYHa3su2/qpYnVbUEbkHFseKLm0sJBtCErb5Q492Ro1H/qhM04fEjK/YHKXAubhukavw/qS7Sz9FJgcQyRjszH+sDZ4UeMw4mi2H8PRIsJhnzymjWhYnpPFy5C4Bxy5vZHstTMHEGWDkNd8tQ3fxKdOTTVib+6lVBLDlYdrztKaRlbqM3k717GqPaKANIhnd7RRcavNU433JnijS+qE37x/BBxtpCPu3U7hXymXmbLN/v2F3s7T80wUMj328GqJpOjDD7835qQazY3jwBTn5c1xuqLLUs07Nyc4VEVBxsqGpja7drMUT7tw5r919fwTX6rXNpwcFo9Y5wPCoTH0MUgceAsVTVePwXsOoE0mtcj+O5OtHimZhucNv6pvebRzTsPFTYGsb9eB3eaUzEYYPjdpY+feb4/VMc3Rytq3j7Kk6NpFIdLgTtG3R8xyR6NxAcHaXCy3rwTZI2yMNWuFQfQ34vEnCYR+ow0aQfx8eC0TbR6wGq2vdQZmY14c8DyklbM5BHEa7jo4G7PvFaozjKwd1n5lGU5n1y7hxQb3qGmwbgnSGryaI0A7rVHGO7U8NqmlOyg4I7cwb80K1ALncSvaBPJoU8g1Y8g9on80KD7RiQ/7oNf0Rj1YzG1v74I1GZhdfcwAfiq92IN9wqpDrHZ8VoaZ2kg8tigkbTSCo3VTHuo2tTxCnYc0Va/0/osS2xI/6m/opSyhY13CwKewUoT77qKZxq2/jdTN2VkbwdY/FEO1Qa+ybFMfqus7mi0bA4cP3/qqMq01adoKaRq6zPxU2AlEkZqzfwUWJZ9pgoP+Iz2f0ToRSlYjups/RMwvkJNbCS937n6J+CxA6MxjqwyXglOzw9C/s7o52FgfTETCngD+ZTRF9plqW1OXi5yLvJRuAebuO5g+qEpa1rSIWm3F54oVzUFRYAbAhXNKf+lGur8VmcOKa0c+KkfZmqPaTW7i5bL05BesQ1reLim5thcpS2jGU8ApnvDn5v38UWu9fxDaJrBTyh96q67NvE1TQbAfBAAtyjj4prhmtmRpbKngmjsteSLhrlzvFpVK0ztA4BFwvpK+4qlczDTnsUV9V3xqiLtc1w4G34oHVkDmHg4K2V3lOB9YfVTQCv8AMi+SbN5TDPDH72nY5Xy5SyQWLTsQBuNXeFNgJdPA+jUyfD6SOgaLuZ/w6/8AiVoHmN9RDW//AMs/RNLPss7tR3d+6eSONwn2ac/3mCzvvDj6BFgcHLip3AMjbVSdMdJyYzFGgcSW/dZ9Ts8FG00ZZrBlY3gnTvc0V0ddbi4rYGjbYUQjsNZyANO85F2s6w3obANvxK9rbwG5FzqMFfkr+Udrbgp3/wAqAjmVO85pT+ChYauqfeoI+7G1MHD4JoFghwTQqbOo7lUbijuoncETtomb2s+CD+7VvgnPaRkDjx2FSg0ymqxEYy0a5nArLUAU+67Yjm1Kg7wix+4HjSx+iik1JtVw7pO79E19GvAB3OG/3rIaAh7fZ4qXBTCeN2oT+x4KLEwCaPYdXL/4/RGEiJ7qs9R9dimw80eIaPLwjWb/AMRqjxGHjnidmZI0OaeXnxisS3oeF1Wt1pqH8EI4jCygJ7xFh/onYqbJGbVqD+abFG1uwcOKJdtuVTUZd288EAM7kX3NGtGwJzn5Wh2Y7m94/RY3Evo5lB7Dd3iUbaZ2UcG/VYOAWjBUbBRrQEPM3r18kCgb0TPZCaU0pkneY34Jsg8mcpWOgqTHpWi9RtTHVjljcOe8LQ+qXM3OQoGvFvaB2IStIq1x570y7Xt5Or+f1TsBMKEuhd+/io/5n+7k2ngnse1jXnSsOeMk94bwhPhZMHekZzxg+qDtb7j55nR3Rs2Lee63V5ncqGXFSP8AKzVJzcUcRLomGx2+CETHWFTtRkk415K2jjNT6zkNp7vzTa3AJ3NG5T4x4catad9LnwH5qKBn8oMG+u0+KjiADWi3pDXC4WFxgLg3JJ7QWKwJLXt1dztx8eCyuOVpb7TOCNQNh3LSR6Rv8xneHJNfCeFKgcv0WiH2eQ54n3a5TaMRxnysRrEfDcmQY7DYvPlZI/JI32fPNdLB0cHd3XePkssbhmrQZYwd6qRtLjd3FAucxtxWrvHgv93Gf6nLNT2B+KLzljbVPnLZ8ZVrNuXeVBhWZYYwOfpkeIiLHtBBUkJL4BWmz6J7XEBv9TCrgtOtuqsslWDKK1HI7wgNXY0nZ7JWkh1yRLCRXmOPuQw+O0mUCKemcbq8Qvt3RDWvdmlg1HHiNx84GML3GgAqUcTiMTiXO1pn5v6W7B+COOx5d6g+SGFw5dTXk7p5cVuFan8P1WZ2QGg9YpheGsbn9kHYUW5cXjRV21jKbOaAbSnn+Xn2yNyuCBriIBRw4fvYnslOplcO+1aRuR5BttKo53HeOI+oUjZhIw1eyn/U1RYmBsY/lPGoT6vFvuv8VJB0v/Z2JdQnyZ5kbPODDdCTmtDIMg96o10MW/b+/wB71EzWndRveenYnEPlfaNv7onZqUq9ya1tNv8A5Fd3G4xtXbWtVB6JXzF1z6w4JlNPG0gcR6v6ItLiO8NtFpmZ9kguqO0kYykbuHLwWV+iDtWTWZX2gnQ9JRY/DA1DgXV3Xt9EzGYGDFRmrZWBw82MLgo4/WNS0cSnTYgAXpvWVjcLCNZx2puZscd2R7PvO4rICT3qa3IL7XiRiZm+Tb3Ag1gAFAP8izMIIqDtCfBMZof9VpQdHqyt9Xj4JhpJ6h1X/dKfHKQTTW1XcHfqmYqtW0dIMrhwKdJgJ+jpDr4Z9W/0n9a+bdjen5YWazYG6MCu/emxte4EUZtd7R4pxBmP8yWzfutQjbmIv6oTsViGQa2WtZDxKZBC1rW0FPQqehCWItI8E/DYouZquBqKJmI8sG2NpmD5oZMh4UDuX6KRmIF9YG/iF9l/ieF4/l4puR3v2fiPNNihfK40axpcVpsbiHuJJLiTzcT+/ggyOLBMGV1KvPBDLpHi24ctwRdJmO1ZWh7m3Kt5m3peZlEJAXUo4J2DxRPqmzhxTZYNIypG0U3jf709rmzsuWEB9N/sn3qphmiddlHt8QapssLJW917Q4eZ+yfw5NlNHy0jH5poc+eX+WwZnHmnyzunms6U5qcuCsG8LrTzNdS1bIMjAAVv8kssza7aLyuQDb3fohDN9nnvE40I4HcnQ4hwFo3tLf8Ap/Qp0UzoXbWnMB77rSdC4Ujcynw8zqYbBA3JqU2LoxrXbXXcOJqi8F7vW+SMs2QbSUIqMpU0oqBUH+S5oyhcGoO0Hgs0gkAoXarhwd/qv7S6PMMhpIzfvB3FFj48QQWuackvLcnS9FPY64Y+3vv5n7V/EcsQIIjAHhQVP5IzYhsLHbdQGqEbC1tq2HIIh+cfzHWby5rIBvKo3/JrI5C9veau8Bsf8930+C+y9INl9V3eHLehpnxB+pM3M1CToyUbHAio8xQVTBNjJ37Xykk/l+IVJdMRckrSTm9tlUGAOfZxsPoqRK3ptvNZmGy0OKLD3H7ORVJa8fn/AK/NaboxhJ8phj+CEfSuJw1e9rNHjf8AI+Y0eElfwYSgzDBrbuc4n9/ghHE91+A/fiUZcQAN3zWknGXuiwVGBW6rdW7q5qnpJ7eaMqrHbi1aSOu87fFD7QzPZsnkpPFOwvTeCkLu47QSH5H4LVFe3m6PxA4xlVxwABpGCiIgwm7tb6fvkssdtrvlvRc6rRbYFqDrptWFwhDZpmCQ7GVugNajRHxJ2J7a6Rjco3tkTcmaOppeu0LCl2WSQNrszCiw8po2VteBNCjSoXFV6h5wV7VNqbSuayg3St9xUTt6B2OBHYqEKuBG1aGd8Z33HiqYjJm/mW9+5F0UOIG2jS481mjDuN+3/hs9PYWkxsxIsSAvtGLcRarrfv4qwa3f/wCkLLE0clQbOuDBtLM/lSOVvin6V8jyXB+0gNKZk8nMYD4UHvUkVmPyu4eqfgpgCYZtG7huqjM3SYgEUs4sof8At4IRhoY/+77G02e7ePC6kgAaXl3LNY+B3fJR4ixqfukUd8EYpmuaczXfio8jJA4UdQJpFQVRXW7s2QVOqq3r4ptNqw7XZWPDjfemxWa5or652H9F5IGEF44utmPP6LFSHK95oO9T5D9ViAA2J7z9xh+bk94o95cTsq4kN/FPwsYa3F4lxHMFqhfNoMZSPcJNgQc0Oaag3BG/r0kFaXCrIQe8LoE1Jyv47itJgnAv722i0nRGEfWvkm1+Hbp0bN/StBp5Kd0E+82CNG7i7Z8vqtJiaDZVauxW6nQxaOKTRvO11KkKaaR5jlfV20uoD8li30OiY47+JUlKPwr28cpTqExgnfrNUsIqWuFLWToiaj3ix/VDPqghrvgU1gMcgEjNv6/qqyBoeS1t2PBo5faYtFMWueN7TSv0KfNFPhZCBLt4X3H9/onyYZkjrVs7xWdotff5qgqhvKGfbqi5/f72LNI9sclKDWPD9U+QFrczW91u8lOhj8o8aQ+rXYOalnLXyudQONuSjMzWtFWCwFdpU7i2pIc24Y3asxyvqfu7lommkb8vF9mhYUPzuriXUsA2rQo2EgQ6tL13fBOwMmrC5sTjdjXF3vAUOLh0sLgRv5dWeJ7TwRjmrS4NVrlrbtcMwCbHK6O5z7v0WfoKD7tR+Pb/AMMn/pQadFW7n3+X1RaTamRgA8f2V5Ro508SqMbRWWRhNV9okqRc7TVYeLWETA7jRNGwDqYbELDy3dGPco3spHbeukYTVkYe3lZSCSkscjCPcVkOUUy/D3qXStcMwezeNtPzUrjDMbvHr8VRjjSz70O4ra2u+oVb9u3UCaDddFuHe7fWwTnMc4m7u40+tz+OzwTYhkLsu0vftJO8/kpK/aTHrFuVrdzBt/f7CdPKQS4N2yOrdx4KaaoYMrN7vyCnzaV9R7Nrj9VI1tG5Ym7yLuKEd43Eu4uWmIdLJcbx+qgiNRV39RUcnrEHipQNSUf/AGrF4N+lYSct6Wus7Q4WqKqy1y4bapwaMveYdXwUcrmYhjbs28U2Tox7W1tJv8O3n6Pnb9wprumGt9Xf8/qs2sa6xJPxX94YBt/dSvJhUCrtQqh2AqoFRTCjmBRusPipG8iDYiyc1tLX2goipbbi0oNbUEW2HkqgX8yGue88Loviawl33svPajoM9AZDw3bv3+qDXeU1nbacf3++c+LJbXLHvPtclh43Bz2A8lCw1DRUJoQG7tBzSOKoFUFVYS3vbgg6u7eOSMGKErbAmjxwKbNgJb61qjht7f8Adpa+yVn6akFf9276fmvKtG4Cv0QrpdxOVo5KkLd1R1UCuuB6+a5oIJpTeSCpuVECgqqvbq0hClK0QdQbkytaXQHUEEO1frOgdTaLhZJS6Puu1rJvfO4a9OHFOjx7sM94IfHqnj2/7rL/AEFF3T01dgi/NESvBNhZA4iNtK5DQNqssDfDrHVTaVGza8KEOyx5pT9wVWIaM2hEY4yPTYzr4zDjwFVhSb4hxP3WhYKQuy497P6mhYmVmaHFwS8iKKaK2JgLfvNuFHMKtINeC5ecrvXJNYLlQsJbE10zhtDfqsYI3P0UUbW8XVKEbAXY7DbtgWHY5wOKhNBzCjdsDH/0PUNKvEjOZbb8FBN/Lma7wK4KvXUdRfhzTbQrO10Wx9c8R4pzwXss9qjPSsWduSRjtnbzRuHELN/E5DL1Bbf8FkxIYeOYo/bI63dmp9SqRhUHUQqJzBRjS524BbZukZbf8MGwR/k4DDtyrpObDPxOJdo2DY0qwc6p3rD9L9N/YZ8bHgY8jnB7qaxHqiu9QYfpXFdHw4iHGNw7gBNHsdZDE4x+G0kkbqZmOB2LpTBN8qwYiLc9m33hMJz4ciGU3p6rkX+TlaWSDaFUIq/VXqt2L9TYm3U2INZnZI/YB2+KfXQ4KHSP2EUsFjIRFHPOc0lSGDY0KLCYXSSVeTbaj0P0T0f0i7GxYlmKoC1tspyg29oU3pzS3JI5oIXS8GD0sczhBUsJF6LCucGSRnDv3vuXH4LEBztC5+KhbtdSijxUYc1V6rdVcK4jcFm1mG9czeXFEYhs7O6/vtosv8V4eJlaSUeCrdubDfxVIWxj7PFJUuA21F7+9Nx8zsZQMa3WN6nZYfmi7Fh1KBWVT1ELio4ARHpRINjmLF457nuLsnMbUyN2alXEbStJ0PNGxusBUKGaBra0OwqQ4l2gILTxC+wRUlcKvvmHyRfjJcVl1WjKDxVYiKKrjLBUO2kbiqSNw+LFD6j0cu48wiqKhVuxdW6nBtaKOE1dryHYFjcUQ6VphY64rtIUUMIaxoCo+Gemr3Sn4vB0h7wNQsY+VrJW5WtN6mqihw4q4kNCP9jZnt/muLvco43kwN0ZGzgsdgSBYx7hWgKbiH6bSFkrtrLAFHY+xVevNAfBESvyEC9Rwqg3E1rSOQ7PZPBQv/iXDsrmkhhL6uF9v69vRVgidQ+sQg/o4gUrnLq8012HAaKZjV4Hgq4mtacluVVUIHcmltw48gnvaWNYImE3aAKlCKQl7bfFRikmHplO5Zm3U7J3YrAXDu/F9Fi2FoOFeHg+ysdjZmukboY+YuoMBh2wxigCZQ/kpHPJZFmtShCOJjERw8bWgg1LdYeBWhOTduQ6r9iyurIEoyarLDimYV7nPgEuY3zfVRZBQSF7TTllQa1QY7DOhlpRwWLwDiGxmWL2gnudrxEE7Vi+kJAcS0xYcba7XJkUQjYAGtFAFC4F0hso53eRbmjrQ0UVnZDUjio4m5WRtb4b1RU6qsQbO4tFhW3zCH2hrm0yPvfjvUcOLMsNM+WmkN6jgmT6hs/59nRQvkPqtJUmkMpcH5uabiNLC+MVvQHYsrco7xWVxJFwFfsBVaaC6HdIT8KQIu+5YnuGMOdX4BZ59E2MUG0ppw8cxjpndQBVnlga7LowopPUvS4JqjXuADYqbAAjRX6rK/Vbrv10KHAJnsprTrMTA2t852U3LLno+obSld6acz9E0nPlFGKRhjyxHI8WssQ+RmXYXZVPPJllOw71kOYABx2jcU1jKBtvkhtohw6qLVWjl0u7emtmaKjJJ3TwKfh8XXEPGaQajBwG8p9RI2o4L7RhWS8RfsFnRM5Hs0RbERvOxPq3FsaK04b+C0s4J27SssfNX6rdgOOxAuLqKRrHkDWKMcZo0AlZoGRmlG0t4IMmL9pIohmrRU2dduqgWsrq3XfsVXFBBwVGUFdtU/ROYN5sqtALfBVOwivzQJBIugPV6rdd1ZZ43BaSIwPF2n8f3ZNlawk0eNpAuVVvgq4JzfZd2P8ACXjiQnyTtG6qkikDI213lEyPkl7z3blljWt5y/av1X8zVBEdfJDggFy7eaN1tybpa7d6adhNOHFf3nI1uqFSOVvh2K9Fv8R80107bXWSJ7mtueSpI1p4rySv/lg0LjyTZHZtjgtG5o4ofbHAC9FryjkOx/hkp4UP4ryjSALckWM7l1SVnHNcryIV/SL9dfQNZBuFceSdma7iELVX+IHwXlpPDsZ8HM3iwrM4IgbFRzDwNVXDgrW83ftUV+1v9DuqYZgG0uV8vBZYQUX4t8g8FSWU8h2KtI4oaQj2Sg4LytOazYYFa3j1W9Aq7s36qH0G6us5YOCo9eQasrCVSF7/AGndkNxMwHtnqFaqsT2cCqO85ZXV+qiqr17d0Wqo9A3rO+qo4KuHpwVGFaKBjOA7IbjpQd7ii4VapMxGUr+8uicNoV6q/nqBF0hFVQdQ6m0QQVlcrM1UdlVuq3VbzV1q1QBVUcqz4ljPvdp39oSXprVTw2hVySsnSEUm7YqhUd1V67eZ1SquJ5qoVCtahVurn1AIOKovKinWPOXRbhTQ0JsiWXcapgF0BYIuxJdwHaymOcCx1SgVYrRm+4qsQ32VD1c/Oah8FR+VWUUMRklkbG0bS40CwWJmyYfFRyPG4FZgrbVzQDa1WGwzqYiZsfAbSsJiz5Cdjjw2FCyzz2VvPVKuxu5ClB1ALRYfO4az79puJwz4XesLHgVJhcQ6KUULVVqoDVCTBRu26qoVQ+dqE/BYzSmuidtPBOfF5Igk7FLjJs+JldJXjuTYNeKxG8KaJ2gxJuNj1qrmpHeTw4q479wTZXGWer3u2kqOF7Xx6hbvCuImB0knBqeGZ5O8VTqofOVKz4xzRustVURneJZB5Mfj5gY2DNGBp2d3nyTmOMcgLXCxBQZ0o7SuZkoCA7a7kF/h5bSmVxtyV1dc/NW6qqPEMLXALRvzYaYx8tyxcdn0I4rSN1gg81AopWWLiQnONLpjNybTYo3u1xXkoIyC1gHuQAp1U85VUY53AJxme5o2G55nYg6KuzcnYuXM60Tdp4oNaGtFAPMsxrdLHRmIGw+14p8UmjxMVHt4hNL5o95Fe1bzgQ4JtNiaqHYhwVAr+gXWjwT3cqKVsukiax4O1r9n7upJYm59WIbTxTIowxjaNHm8Ni2ZcRC1/wA1gYJzPCZQ6lKVsskjhz66eYv2+SFEFZUVeuh7du3VwWIxmEYyDKL3JKjio7EO0h4DYg1oa0AAbvPZcQ/ndX9Ct1WRqrLf2a+b1wsuGYPQK5Xclreav22M3pnuUShpUOCA2InenB1CSmu2oOuOzfs37FZGjiVlYBw9AzYSvAqjzbzV1RDqCawWK+8mn1kNxQI7yOtrLMiLVVN6vtTmmlSmu1SU07+qqPa39V1mxDeV/QdJA9nEKkh7F1frurdWjO1NG0pgb3grWKZTWlAUridG0uHgptroyPcmHLqEXuoGAtaKnmnaIvAFSaBaOEl7CTxWJxL3nIQDsrZYoWEVfesc2h+zuNdl1IxmeTDzNbszFtgoGu/mqSW0EU0v9LVNLFnljcw8CqeZuqAv9C0eIdTfdU6+XaqmzxlpsTvWLZ/IxhP9QC6WzUM7AOQUlaTzyuB2gWWDh12RAGu8VUbnVso8mwVUWShaPgoXVq0V8FCwmwN1FtDBtUdCMtKJoFQE1zclqLOfHaOahfJndE2p+6oYm0DAEBsHav2KuWjwzed/QtJhtINosVlf1W7dlfqadwQJNFQrIabhYFBzwHUpVNJ1SKVWyhsalBrXeKa0kbnXHwTTrCyc5x2bdn78UTfeg2hO1XsPOGSVreKoKehCWF0Z3hGKVwcLg9oq3YqECjHcXCa7fQoOG5EXR40Qt4IutWiyDbuWy6vVRxCm1yc+5tyQAt27q/XVyozSkch6JpGaZo5OWR56rdqvYrZZrioKxkGyjwFltLA9vuqsHsLyPELBf8diwbb/AGhnxWD3OLjyaVnPksPIfGyxs/CMclkNTc8/OVRkkDQNqEcYYN3ojZIyx2wowyOFPAqh6r+ar1NO0BMPqhRn1Ao/YUY9UJjfVQHnalaNmldtOz0YYrDkU1xsTopCDuVD2beYqhwQTUOHVRU83egRllqe6NqAFBsHo4xMZljGsNoToX3FFTsW7Q6h1X67eYt2KlPmeABUlNgiEbd3pLZ43Swt1t4ToXkcFTs17F+1TzlVJiJA1ra1TMLFlb3jtPpcDekpsPMAw11X7k6M1FxuKp5zd1381XYnTvFbAmlVHhog1gvvPphHSLnbiAVNh/JnykfsuWFxd4ZAyQ+o5PidRwI6ufUDv9A59b5HUbdYbCDWIml9kGwUuL6UjdIbNqQNwVB6ZXEnm0IhxVCpWjLL5VvNRSjVdlPAotRHVz6gfM8+q3VVHf8AFQx8ZDwCmlBjadGw7m71f81XFPk9lnpv97I+6rlX6iFIzuu9yBOs34Jju67Yi3ahRc+ocUOKHFDihxQ4odXNOcmN2ur4LgE99iUSVdVdyVI5nU4em1xjhwV1ftPA224Ib7Lmiua5rmua5rmid6aO85eyK+Ke/aVVE9i+xUik509Nrj5fFXVe3dFP4p+8p5T05P4p/FOO9E9nl1cldZZMvEem5sdN/UVt6uXpFwtFIx3A+mUBK0mJe/ierkq+fv5qlFpcI3i23nMT0b/D+JxuExHR2Gmjy5ZMeXCAVcBrZb77c6LpDp3C492Pn6KxDsNiBE2Xo7PonDI121+3b57Jg5n8GFZnHkr9dvPcvM06ssuQmzvM4qLFx9G9HubHK6PSSzOFdGzYKc0+GMyy9MdJUFy44lwHwClxfROJklnmmAxbgwyvLiG5W0F10ni/4bxeH6GdGzHvDdCZKZQcw21BGyu5Y/ExYqDpHAYXBTYaXIWYbNkNq1qWivur57RdFSX71lmefM39Bp1lrgQboTwNfv3+Ynwf8UzOgcBmhYDUKfEuzTSOeV/gE/8AzTv/AEtXSDv4Wxrei2Yl+Lc1rWNw7w2Q1cK5XHZat10th58bgMZ0V0vhsGX6XCvx07ZcjaNGTNmJ25j56zIQdgqVfsWQVUK7FTzXDzHDsGJ/LeE2VtWnt9E/xP0ZhOm8d0fSbEwtcRpnW5WIX8O//D//AM0n1WE6F6VwXQuAwgjixjZpnHSE0LMg38c34KDE/wAI4+LFYfC4iHK1z48TiHQRkB4N3tuKUqsPg+ise/CM6PihxGJbIyHCYl8wjGjZtc69T3vf50MYXONAEcRi3v4q/a5KqHnuXVTtEHanNu00ITJbHVd2v9iOiP8Alm9X+2/Qf/LYv/8AUsFhv4TxEWKnhjklymBr5hGXOY5rtUm2YUqK2qosV0FjcXFMZtLiLukkDpaNaGjOGijbNFr+PndHDoGG57yLiVfsclXsjscly6wuHUPNUKtZEUbJcJrxVpr2B/7JYPDGgmwmbDTtr3JGEgjqbN/HnRsTDV2GwOIkk5B7ow345XfBYufoOdvR7IzizlbG9wadGC4BzhmtUNqfcuk4MN0hH0k7EOLcRljdMIwXANFSMm6taHzjcPAXn3J00jnE1qeq/at5q3Vy7NFXt7+t8bqtKZJZ2qevFM6Sf0t0Hi48Ji5BSeKVhdDiKC2YC4d94fiv4vlboo8H0NhXWzTnESSjmQzI38SmdGRSudPJisZiHZ8TiZO9K73WAG5o2KJn8DdJmbIWZGgh8hY01e0XI3fNYL+zMX9ig6FhZphUdGTOkZWm8u3+bbEwueaBOxD/ALu4KvVZXVuxVDsW6j1DsDqoiqIdqysr9h8dto4Jkuw34dhkrCyRjXtO0OFQoYQRDEyMHblbTq//xAApEAEAAgIBAwMEAgMBAAAAAAABABEhMUFRYXGBkaGxwdHwEOEgMEDx/9oACAEBAAE/EP8AfZixeSvPQ7sCo8mMOvVexAxy3qwrb61fWG6C0VHcfY9EQdVBtvdF9DHaZAWy6prpeB9ZhbHal9sD0YYuW3gelX95xOAq1fqsYAzGFTddsSm66iz3FX6yxBnAC+aVKndAKD2tJuGBDezSY9Di8RRpUI2W9nPAGpXDsF1QdtV9osQzdtFdX1mU0Q4Xt1+YhQRv8IN+GZge8svw38yyBtlg/Jn2QLQGF8sVh39SMdLAsxrrfv2hJyi9PR6PmntAVgNmfL/vHCa1NARYgBnaPrbr9qVxNacO5e/X0ipkLC3pwfges4i0EHl0X1GO2GeQerx7D3grWyBU05FwBV55At8uUL8SsnzCXLNiF+D8JYWBsMvfKUAQoAJXv91QAOPDb81G5Q5N3xikE3YWxoeoPSFuE00pUcCP7qUBcWerH5fBEL8G2v8AWJYVthBR323BapgsCnvQ/ErOUwj0FQAL0GW8ZHseYuMWb0rw3T7wVjqsd4c/WWhUsftpx6KYViwvfGH5MeJbUChSy74R1+1OfprYfH/abcOuV0O8VY3Bsde/lx0vcR5qDAu5tdv/AGFZ643ouvjPVhKSu0t5N594L0LWwOoAvujKcp9MFteahAuNYD8rf2jgMMrny+wMPY0rYt+j8S4ajsHq3r0iQQwGv1ZiGrVRn6KVAFRLsIexCleZQI+RcbeDS3hXfnz8RwrnMrOHzvs+kKto3WVrVQAANlEV7u/eFVIcLUPQFk9Gb6kUreSx6SwXeAR8fWpZHtOMb9KvzUulR0rPZ+iwCtmjM9ChHxODxaEy9L2uyMeKDVLYvIPL2u44Vt1wPYafjzzHWM8G+H5zk7wCyqLuV0/KIAiI6T/qGOuGf0wdOrxDLljN8xyvri+bKDmAQE656daxwcL2GlpfIOF6svXiL0SG8SP2wdjcTCEs+elh7nsiSc9EeGyvrcRChWIZuTZO+CMG1WDU9NvVYd9IhH02/MZ8LqQq9doml6BH5rvrPmXPGgQC9igTL84Mu23a98ah8ZWikeSw+0vxTdBfo6xYCNplt9mXmg7uw6im6+ID0xVYr7uce4TJ+iwKzujOXrUtCugq99PiCQFGQx7qs9dHrKQaORvDw3UZQebGHhTPwIxBZyY9THyQNoq8j7M+0VlBjOB02Tw2eILF2As53LH0slhFfF9lv0fSoaoovp6/c7ddaljcOAfqP3rF0sgHL44/auCx0E+n/QVqGkZe5xFd9kSflPg9ekzara0eF6e3oVe7I7Docb7H4QYruOD98+XiE02wPHQc+1doLV/RV+9yZ1+Zazv29PeILk23V2+sRq1fI18/j3iVSMZD+4fk7dtD7EcTmMC/NqCmk2Mr2w+sswO3mTxk46suLXT3BhZVBpo217mgZSg01WzXdYRYMgN3d5QXk3mYVbqsepiyAGxle9RAgWUpnevMIH+01TCP3ElIo7UyesE5Td4F9qikGgdh5NnvFrvgsfSCfXKr0t/u4tRolKns/wBykEavgeH8469Sol1Ng7Kw71Z3mh6YhdnjxD+rVCeyL1089Tu0VfVcPn5JoVpNvRP+a+5cFur6HLCWrTOzimg19M6KoO60D6N32ddsWCnSezweM9KI8HZB6jXQ7xh6oB99hBqgKw9D9HmI5l0Mo7GglyQnOW192ZNDlO1jjUc1glRr0C38S0VXV6e1EQgBgz7DPi5WCrQiXi/xBmOyVeuc2e0cGuy+Sr9oR5ttQ3nnUeBFzQnvtMuWbND3L6bisMtoWb7/AGlFtVqpPoxgFHJC75/McHUpch0DmZJxVmZ7h9YSy+UVHrXxmXEFulKT2nJipGT5MPrmFQLxMXXr6lkrTscAj6fVKBbFNPo/maD6T3zn99S46POeQ49npBxHpXddzZ8kT+5gaV4vr9HaDqMGRx7TnvuJM6Edrp/yZw7PVeA7szgJnq+4693EIDcoDdnBW97/AEUoGqVPA/Y0c6qPWwQdF8nK9OewEDQE+A9viOaByj5cviPKp7Gl/EF08oYJZMfQcMIQB7CDAVroDB9pjgOCy3zUG3Q1lf8A1LSgZrF621HCMNBSHjJ+AiQrbu7q6/cTHo1yHo0LG0hV8/qf2i48eRid69YwnRoiu2S794BRdbYWfiLFo1fP6/maAncvqUyrUV39atPecM7NFHnpnzFKuBStPqSyC3aUejmNdm3CNL/MG8+xL+3HkxGAW4OV7fU+Yi0Q5FOo8O24IOE9x2Xx4fiO5Vr9eHuQBYYLlrwunT3QxbRCuzw9Po9pckyyys7edLOJj3oBMPv2YOMgHI/8SgWtEo1E3C8JOVSdAXEKeKWADNvC7X083lqXwPq8fuSctVbL2Dl7cbeIfmr9d9RYkIBgDPh+1K7JOyvJHAAmtP8AXmMqXcBa+D7vxClSrzsiyafDj1gUs+Kz7uPSNXIFlX5/8jXdDr7hgtINj+rXpcryxjGP67QCuHNID6cZfRBVYO2EqqpMdR2xUDDDEVw8cRaW2rH7jmLUuCpu/FxVmFGL26x6CGGl8lvpAVLNIgPuCokwq6MPFInzFbHVVd9Vg/MpC9It55jaMHVA+EHeLynZ0+kYzdpTfjn0plXu8ryKcnN+w7wF5fl+/fv7kYuRroOn9QWraJkdGGwwU5b1Pfl2+nURF2o4s693p3h5TabIiej+iKcTaWF5v0f+IDCwpd4lFdyu1vSeH8mBs443rF6pB04Zfyfq0Z2hMCQg8pfuIQ0PoInV7/8ApyWuTZfMUtFK0uuh0O8e4XwrPt+WZUiMtrDx1YGn50ZfELtQ7V2938QksK8F/vxFexex6f3FBKWbRD8wbZulKPXP2jgq+E+YPtB4s/dftEYWHz94NljteveVXw5pJpSExRvg7TCXse0HW17GaiMJXF32MRIGdh8XUqoBOTLfXUeltrBAfmC8h4CejZHJAHafY+8dpTWWejHyRl4/tD4f7imSNA14l07P9zw5LWexHJ647zJYmXs6PXzjvLtjg2g/eN+eHLkYbNeep3g11tOLoeHqMNnk1m1M9+Q4u5UJdMrV+q/dxIR3dvCrn7+SKcIGfTP3/wCBKDGrV9o6W8xVmLPEDoHsyqhdDTQ49vpzGgBBfUYPePIaijK/Hb67mVBTjg88TIghVGAO/b6wBUsydH70iqOAYPq9CemHidV0Q0avJp68wAKKMGX2iYWHGvsf+QEEXoL/AD8wYS83Vv0gRUztL+sXyeiBwJ35gMUmsAgpRAQUHqVCjJ6OdwKnJ2ici/mbqF8v0iC3do8zug5Qxc00qH0bjgGyL6hFFEdc/Mdqm10+n6w7IOS27Oz91LBFG1w+Th+kJnP1YeflQwVp7COyZfDMKfLCsDsPuHm4l7uV7Ha8J4+IWNZwNhbl90RAJWWwrK7m1yYllTyCvLrwm77eYvjQmupXkvwhATCByiz/AHsbxygXqr28vaMSJfpw7A44ojVCUjFG1S2FpaGw8vn6Y5aDokMAZrt08/rbRAaDJ+TNgQd3t8/eBjnI17Qw3w1+R4ftQhRs7DuTB6soof0L5envA44csNBOgQDCTgDETxGmi2aSvEtWIK61Gqj0NmZhs9e8SlVEaYEdEUWIajj7Ee17MEcHhJdCuIfKcdN/WMi3BYHviEqZdDJ4/feJW9gSY76xHN76Zf4enuMoEjOIo69/Jnt1Etg4VadhydNvao1Y9Ro9MOm79TtcHb0OleV6cX79ZooBw1pvjD6MCVOYCv0Otcf7joF1Hl0944qWrgs+oWdsxY5TPpwPLt9O8W2sBLxtXkNfGHMR1dm21/324OsIQeDddrjjMGwoz2n526lAOSwQd+PtOI1M37W0E1wBX3Ft8YglBoAAemoI5gYxC2mVKxzKrvAVEzA0/EprmVzKzxAzm4HB6Ss3zHOsVE9Zwc+kV3jzjhKHtAeBlWPpqUFgxhf7gFG6cd0H69Lq4smz6O0Oywyz69/3eSLiaaqseD4+j5l55AJzbId1n36kFwBOFyX6Zx5IYsJ3l2X5HHU8Ssm4y2nCN8az4eWCII2On/aeFPV3FvlhuYcDN3K1wbeqhxHEivicF9X8xQqcHBbR/dHVl95CYOB4P38yikpMF7dXt3gG4AFwdLehwEcBeFPd7Qp1BsvlhACoFZg6zIgVxOITziPiUekN8zzA/gP0nJBi6id5m8zwxLO5KjU4gG6gVqNYEDQFIlkfgBbenV+ffGtYBQ2nnuekGzUbuzfR6j+e9qBHrpuwvZPoQBVoj+moz4AJseHfB8PSNGSAaOntXY+E6REZAzdH0MeR/wBhSFkeAyxjwwN4HBfkHuzNy+g1Q49fv2lVecY1yZ8B6RquGfOUPL1W5RGBtX5gR51YO5W09rg1+ZIC3I0MJAFYqFOMTTHWX5mGmZu4alNd5qVqMq9QF8yuX3hhKxmKeIlRPSNTcDK4lMSNTadhMG5VqtwDqKgJxjULqvajXnr9HiKl313Op5l8MUU64t/fiWWsVe55P0s8Tc2wrtC9d0/3MuzXEVlTyadl2jsAW7FjLz+X/YhMkvl8XCcXqk1aY9qPWMhgbgtQ0Vznjn1JQAmqD27uPMpU2GTdXx+ZcmF0gZ6HiZAEpRg6X+IQFAEAuqnMVQktl3rNdQYTukdTMKWqhICqgCBfFQICsXGxKBlW6QLeIirlViJ0i9Y1Oq5hlPQma1HB2mo28S5GHAZfR6/R6wWQTDS+p+P6phZht1a59PpfSNmM3MJw+T91EwjFYdp6OEe4d4ByIilbPcfVLqC7ya/14fpI6XB7U54icJra1bnPfKvRWZSNbi+L7Bx6dIGiuHyPR+7ly0yJ5s15fo94rffSmFvfeHuBQEHvBSLmVmG9TDBH2IaxuAprEM6h2gXmAjfSHrAwNEK5+IBL1Dmz4jypgf3AImWYESjEHMYx47RL4iddxurHUfSUqFXEqjZCSaRfDdP736yrMVbbPd+HpAiMYH1uo9enhiLEh6Hp9HuhKu9WsAbo9vGGXgs45VfanuP9dKdFuX/0PS5m9r5Pw6evM16Dn0YX65628TJh0GHpjob+OGBdo6rye37xAPAAA1BQcSrmJUIYlnm4GszCiB3nVUuu9zfW5WMQHk9YW4lF7iXs+I2AnNKKvT1I6y+sz1mn97gyiLZr3jerxHfEdS7uIG4B2ZlLlcsdXUJMSyMJa3T0jb9OH6MGcf6Tega3T78LF3VTqjfD5Xw+II4kDr/2PpXMyLqtzfN4o9f9VyoA8AWy5xzW7Bq/OXw6SsY9QG2/3fmCwVTqp+rz/cEjWNYun/35hnVxZ9pVaLROOZ0KivPxN79pdxAq+Ya7wowJtbDEEKBn0iWuCFV3uBgzMMy+e0a9orAajiquIvcWLZnq44BjHUVGyc5jA5e89I89YG2mdLCZkFxtj3OsHEbOjH795d0ebJTA7hrzjqQSzSEcvCLPNRGlMV9sPNHvGRtB6iWf6VOiaLTTmnehPWYqWE0owV1xXrBUtF03x+ukJFgyeXR7Z9ozODH1Tnxv27THsDLMCsEv5mVQYqoYh1DDcylK3BklZhoqX3CQwZfU5lWd40rrLD3gp+YL0ivNTldsd+ZeW2PePaLTSxO8QVJVMb/Mv7wYgDU5syqhrXBk6nPrKVyy9Z2/ceJpICGjkepZ4gMWRRhTd+hfak4lgFQ3UAf3pBVWD9L7f6Txnaqozb8HvBtt8SsjHgT2IF4XM6l/i6x2HrKfJxurz+9IyQGiuDn6fEUbu3jpKC43tHe5XpmYFQczzGVCpTUDpAScYgXBBnDADZCnWYUieY4Zc9phzmIkaIpyZivuxOY99x1qLxWoOhK4qJqInebKjdJuDFEwxqZ8xtbgYOd4jCszCyjIncfxzCOWoMVOvGCdmEfCr3g7cMUYcA2r+j7xsmyfYFPe/f8A0ldIXggj6oirrAi1cfBvq28wCUJDo0H0D0YsIyYdufA+WFaukusvq9ZWWRiaCNmNcfx84CHEuThDEywwvkqW3DjpDUHgcy+hFaoYPgivPMSyy50YldioHEq/WJ0gROCIW7jjE3HnE7E7qnpj6fWZFx1nWXxpL8x1CUYHo/8AXg9E64QsbWAnv6kRvTbu/wA/0Rr+4akfkr0/0OxcFzOOGndinh9TtEyOq7t3XvR5SVG6GnUH536xCioH2eOe8pCqtvMDTpK1HoZlUMCx4iNzNnHEImIqBarMPZqbdOsq8VE4xHsg6RGI8xzqI+ZXHSIg3E6x1KVhivKOoxqJneZvB6Q5jpmLJDRonpNHtt/Tf0hg8WtHi2T4PqjsgR7tz7fSGRFnjIMf9BmOqp9GC/8AWxt+PZHM0Ld20Z9/gIFF2t7/AIGX0l7btHnq/viCXIBUQom/4PlE4axGFLCwa5DHWEuC+GAL34issWcbYNyriAvv5iCEt4hn1lPEw/SUblkxmaR75bp/U7U8TlLgXeGMgmIAalONR8xWukysuLirLgGXjiZiQcTeEqUarmLljZ14YKmIVG9HD7iMGtrScHBTv92Uqi8FWVk9TL8hrP8AnlWqN+kTOwqwdD6XLsyKeua+TD6grbyHb1qvRiAlkM46/vmGD95pRee8DRn0uYSleYUVLq371xBgjNYquGsiZOeYMhFdT0u/yvZijbEAFDw5p6gwXgKyO61lO+rn6SMKc+sQKZmGsHvDtT/7CtvdS9ZtwwOt4g9YiJcC+JXeIrO5XUqjNRC64iBjrOY+JY1uWczLc0SC7pqBwVvMUQCMtMXwlMUC9wIqlbN2Q9sB1DZhvxDB7QVExAAaNLx2maFOjoOPUU9YomgzbR286+YGeNR4NZ90nRY/LP8AnfqrQrAKc84v4fiKyAyqwFoP1ekO6oAtcaD1ltg0FbznL8weEQNVeXUwboXUapsBkDruCbg4yTwtjfnWYwtXsoZOAFZ7xVozSj1609N9JSD9PrZpMnydahIPk9b1Va7Xlxqrl/QNhs8/0YqsbmLL2JUcNy+CvASKZ6rwF5eo6h6XBaUTxpo878g9CKoLg3i1x7/WoYtDLG8M66NswkPMHrg5gMXmVrZAsjAWXmBkMFMccxUN4gBaistwxpwoHImcZmt3miCjVX25e0LTOAtJynZ150RxnmrKeBo6D1rl/gTeB7odbs1nFl253BSNetz1e5NXDLwUUOOrDwmYGOwJUSmg0aR7lvuV4gMg+AHUYnQzLrxDTcV6M5AtGs1m/bfvANxIYWnDjTsimwFDlTZfbdvrL0SSS5sA/J/mbVS6Wd4oqBgXbKelXCcBT3W+besARUgDvoPr7S0IctYlFWGgszMbLsKjt33wzSWDlVyByjgDbKnsNfMw9EpUgeLRlwNsMJ4dRbU5ELjq9PJL4UxRK11qj2XBFLM4XrY2enzsZyWwmh4Jp7MWZ3gANdADrxZ1PUTSbUh0Sll8AiOw6VMuQaUW2Y6VzWrvTDpiNHQff6ncliRkgGwSZ8YmtiDvEfPJK9tesc6GqmBVy7UYxcBk1kIS8QXfuh9IUmBhXu7q3gwvjwhC+lF0dY5XB+G8nhpMutH17BmhCIwijbg4OB1DN+ML3VVQcHbwGq4vRphBt5r5MPkM1dwoRDLuyr7a3ivUhIlxVaB4Nvdd9JZmgwp3raZ9LlSv2BmbfOI41dDiegY95QqwHl1sXTjqb9Yae8dS6JwwYxUABtQGaZz6/eUqiyGq7eGVhpWp1im/QPvNMBThxS/P+ZWov+0yNyD0Ch8r9IpFhZ7Lfle0EFlAK2m5QtDmp0HTiAaCunLLhqmxb619491IBFmgx0qAu0iBA2cw6iTTgxXRlgnPmKQNcK1VxwRMZNuF5bKHvCcSMlXWrwxjoxlyZTZVvJw/9GYQAhawW4XkdI9RQRiAkRTYpv53BSpQF6n/AJUogZ1mD1glVHDKd5yiRUiWJcdqshlrwp6le+fmVNV7lX2/PrKQ1vU7oZ0Rg8Di4pqQ0tvgDzgPO9QGUzGtnasvVeXHUWVraunPZdVZ4O8Kx+GBrv5Vb2ESzV0cHOc93OC+szy2w5FucVb+1FwgKqF+Kr0guw2MqeMqgffZtc9a18Sy0OOQdpW0HREvOLOy6kLByd/SGOoFEcWd5cnqRwnHDo9v3rLl5D1W4+uJUSayaXQmzqo+R4lYkupZpH4/zUBpfoQly6DU6Cvh9kcJrzJUn2iAplQ7r9KPWCXlUai7M71Lh2e0FUBfEQ0zpEIxKXMUOpALW93M0gxGgXeMN9ukAsbLpUpGoWWVv6Nemve8kgzr0urK69PvLu1W8inkHvnHezeQwwvxPRjYRSW7ZnxEhluUzbGnqzmKIVZarLcMAKFjtb9H5juimHUrB1X4CAGQKrRwU9AwcpcXIoJa3Z4zxWLd+IQwemqsOB09vzWCNbD3fxCzGhePHSCUBKEV1UU1Up2i9ekBNEbAtKYHEYmWcxgd0ujaQx4Dm6jZ7LEeu9w6idHfvEIpt9oo/vSv8wJaJPswVaVqF64/VGpVVPlwPe30heMPKRgDuv0Zk5YMS9tOCW9/+xd/MOsGYxtlDmpQ18pTugjEuSCt1EXik2gx0l+8p6VMAq6jq6dYSOJ7jvMdMSjccZ4lM5VMW8RsKLp6QolDJZv3hlCDR0esw82crlgdBnrEAU14nPyzs4ZKfZnDL7xI2/WWE92ZtywFwCdZVlRDJCsNlMC1Gtwea8L7MHYOi3IeJzX08RlmqHhSfH1/zYO6+yxxDTz3zJxqMvOKo75Z2BIgPK/A+O7KtyDMVZ3GFpGCdZ5ghl9IOOHtBFJRyx4uqmJ66hFItAD4Lh4sGgZaxzAozocL5iLT4Bet68/EGXerutdn7RdXuvX55PaAQ4wq8Tpwg6iFWQUFO0Q1OtEcxQuoEGN54iWLLuyC1toXQS0VRqBUGw86HvCFsA3NWDGdbmxY1FWmu/mFCFVYDy5zwkNRo3Tfims5i2CFGwPWxPLnVqeZaWoQpalG81BsjyTPMQCOAPOHEr2xpPj5cnkjMqcXkHv+/RlpARUebqg6Nn9QbB/yNfSj4qKeOmBh29Yd4VyTq4/e3eUizi3QM+5j/wAlRriOykuLdRZe4I08S2o4yFe0YCNLcHzdYRM1qqpXjiO1jq3aroPzAWbDZ3zGV00B10wt3TTKBB0FoWqssVHOxiy20QhzjncRNweAOLIRLD7AnD33GXYFbvudTvDIMkLnEU0lSEqGNwEqAYHEPLUKGIi5CIrmBC8RU3vitr0qXQcdJ83TsRJWWDQu7rn6yuuEV2sl8/1M8qpuruHwTPTFXeHBoVQcxHvlS3TK4xQtp2dX1JcaI5A5cP67TlpcuOw6XtuIXh2Ox6dmHpcpqPwleIxYVEj2rBKctj7+rDaGwe2efXn6aqVcDeLtr6F9o1KiKaf8ksSV5mH9IKb7O8cM3LkUq4MP6uKztPofX5ekFAt1FqPeXqhma4D0iVnjqkUgPCF8c1KplTdKOHXT96DD3gLOKOwbrMZQUzDYG5bFiolC7pJZoVIL9kblb1bu7YAIydJeEbYb6ksi4/NeHkheBWMgwiuoo1FGMRGAcMqi5YNpDaqdFUVeBeIzF1jJ3CAuuwEPXlOyLGuBPWV444MxcuAsbLyV3i6lzh21VNRelY8LrRHIScACeS//AGWVxIE2tTIhCBx8Ga8ESdZVfQLoc8fmXCqtFTjGONP13BAb3834rcQWRJQzSUO0pN9O8xElB/WmvRK5hc54Jp6p84v84D7TwALAYC2xXh5uGjj/ACA1hhmTsRwafWCW+jCtIh6DDTm/24QGylKccfRvx2hHozCy6haIY3K9BDc0+al2uGSH0PX0gUqbFU98y77yA+0aALUyQixl2VnqvtBSztXk9PEzAHOBeDrCqFz1XlZWkW9UtZYnsW8O9+0EeQvU5aK3rpTFV5PsiBoxKGKhgxMCjTHiJznEyUy1zLaVDtlniWx0GYWL5gtPApK4JSj0FFwaOTLA9XSxTVU6I9Yf3WmdegkRi0KAqtufpFM0Y6HgDglBShcBD3BM24iVrbAEOtl4lVQEKIa3V9JWUrmmfJ2xuNdIy1LAXxLDuQediV+lNe4doUtIoF1rtzprosrIMNL3aLwNzIoPF48P8R0z2kuWcSVCjb5gGyyWyI7PMAqSnZ037rZ6BMYQRa4r83M+65fdEpNQXZLjAeKvS5WKHN1geveHvSAC3i9xiMeRVHUb+kR7I/8AMv8AcdYOJkhuh0r3xMeoMmLHX3PSCMJwMURjhbhQrXjz5jw9oqGIcwl2ssFlEO2JxcxS7bXSNJuUFiN4SEq5i2W3uFqycFAehMIAu6NRCUUgWB1rxELsowN75vHMwUiUiwsVTv8AEYVmVsKKCex5YOUzwcX28pn9CVgZwU7NaTfqd4av6g+h94aq7AHsO1wIsLNTjRUQClV8xrxZw92b/D6VLTOgFwVFeNHszD7Nm02+S7jzFG14hh1eIcPP+DGUvyIQEtLS6PWJtELuzUb8pkXVreBb+oQmKFBaEfPmYoawgXcHpGvMONMY+n4Ij8r341MobacbcHMYbAbW3GviXCAABjSvoRbqCrzdLv3YYEFCFdP0h5D1mEY9UwQTOIp3OaNATMXEbhLuN04iGrxDmEHMHSLbS7lakwvMMiUHeBwbQ7bv9zD6SyxXTPvGwyBhmq1L0KDYaGRjFqNl9Ym0KlJqpbkXAmGCsEGkRgw3jCV8/wBwaDcBN0wJ5Hs1Cytxkji+D1+kOi0shHbb0+of4NpcP5iHLFkiMIvKpVeNPmV1apoA3XjFe0xRWPrLq16wK8GohzcMMNQOnMFldcRCAEHT8SlCXFvYRihWYGs7vUMZu/WZ1j5lmZj2l9OIDcuZYiwHMoM8y03qOk/MDsqC8kWfMoGSUsUt2ThMRLl+YPDATIvxLOHtAKqAeiBCVMCPm9R8R5jGz+2AzAc8Zzv3+8pG2VQCdz1jFICUnPdhdRSvr/hTej/CPFgNPc6wLkHjbpLhqBDnNtV9GEbVVtxabysxY9Y8R5jHEyxVx8Za5WqZlKeIHEBwY7xvLxOJTnEQTChFS9I2bgzqamMeZntjVcN0srvcvxBZAvRqB7wtt11j0IlaxEb+Im9sFMQoVLTUrW4gLlBMnG5ky8wigYe4ODYxjWfk37yhaTIT6QWgVsKI/Rf8A0i0ewIpipem2KQBwrV9QrcZVZGznAv1lRlnmVQ3Wphh4L+JwkuIa1APrKQN9oFyj0mBiZTpzcbi3cWGo3KzK1LrcABAqIenpMxiqFYG428SodYMY3A9IDpO3UadIDrqIXUStSrvEXMXlKlhGquI99JYd5lZyR5A2voyy21Qi71/7CL5IjUJG7QzRKqv1/wxjf2EEvM2t1ltIVK6lP0lucmCOn0MzXiYTrOzGdy6qiuIuYdTeiHbEM5MzrEdbqOBj4GVF3ACnzLMZnTAYxLVmCrqXbu76yhoFzOFyqCzFxAvMAhSkrG7lMbJfTUfiNOYyXjGusVXEDZLjEXT+D25j6EzHv8AaWjCgVUJwzFG7GeMj5f8AZyBGAfyHs/1HLujiXgYNriolKsq+k3TXZmUsxs+Jg3MGbmLET1jdxRfwF29JWv4N5xNoqM4llhG6S5jIuEhHRln9wcq4jZGNWmmA0XZqEclQW41A0W1Kxf2jvpHk1NMS+GYNMQmriozEa/ganMY2rBeEN2xEJOqujGxZjXJQmZgqrWMicR4P7v/AB6zz7rDS28wyBrpAaaWvwyyHGK7RUy4M5ircdZuBeI+JU5c3BsqDwTBE6+kEFi3iLTrMqfMxLxC0YiW4B1JcmoVExmI9sOy6hOcwt/SUjxAzVBpJTmVA6zF7/wVNR2jlOlRFxc1FbFi4s3d3BLvxDmks1o1DqFRD5RVjfBCF2d+ef8AFKA+8Y3y+spXaNalywUaeahWy9oRR1Mp0meMTFQKNfxUwRvUlnEMFwekF1KGlJzXiH4YbItbKm4is4l1U7gje4v0lTDcMVNdZbZgjAWLd41/GtN30mOqIbZxG+sXGonLFVLvvNLivFzmjcst1BvsmCTrceU3eYVHTEs3FSsMib8Gf8rMJCHcczkZ0QTKsEgqyvUqMqpVRYJS79pW8zFU0TlRuW5glBhfU6ds625dUx0cEaMNbuGvWUyxjVLCLDvrBQ3xArfvLaqLSr9YJl8ZjEvHmLzxLeJeZiKlBq2IdtxV3rcVVLh1FxzUfeXO7PcgbmDrGbGZ/VBdlgb6waoplmULTlhrniAN7fnH+TOmxOvEqzA6bhirQwGGCK7xrR5ZptGPVcpe2uJhvcdazf8ADkgr3g1qHqifMcmT3iQYsW2zuG4HDTiA8hdTWgFQ9Wbcwc/0HfpKEXjdwXRADRhEatRq+YTt2VtDwWyu72u/YaZQFlHeHWsHTxL8DHiGH6zPdwxUW6iByzsVGcEy2TRcINy3n4mCYKiDi4c/TLLmhmbzKUbCNLocf5Ymz6AM7wTae52lbeXMIRU1NYiB86Zcmu8SisxwKfEXFsRj3E5hVuZqrDE1dkwZAuOntuUTEo6SxC8jFA2bDN+viAdeZQMvHPHYGgmCb1mBGXxOJtp0e/eYFvEVtfdMvsRZ7HVjIJXlrE/KrMDfmXNFjYD3eJf4ryGjtMAfWVzjJEZL7Qw6kcrqU86jOTF3qPZ0lKkvauI7zmLxvtKm8Ylr8P4zgu4utyrI1g8/xAAoP86DAWtV6ow80DIyhhklsp4Kpb7R3ZitbSyH2hzviYW4uF3Z1CsSYTOOMzOTBuIIm4Z43FzeJTzl7xhlc7ncRDax2RnNLeN+3iVle0LijgxMuA01MeJwyhkDuoCVZ61OGWdo/wAJ6sSnH9KStiqirQd40PeIm1EKu4ou4sV6xpiddmDcs/ic6gFXtB12zEa9QNV5Wnlp9puJCod2Sg6jyOhC4CoDg/0t6R6J2flFLWf+UQ5oAPEKI46P76QO+8UYaStMy/bUVC5j6zgP4B2MKY6wvzCxOiWMSmIq0M9f4xGZPSCFMniHejcKaDUKqvGIQDVdblHmD2YPvLLIttyiLq3nmEvdEOKnbqEalt5xFX3gttwWL1EJYFepxAtJQVvCWnOFC9PkvYQBxaA/10LJpTDw7IuBIMtPaIzil+IKM76Sg8MeRxOi8Tv12lWIFDRKOYVovMIE7fxo8ym4l4v4lLm/zMnKCUdENommKpjFTCDpXaYHvGUNyyIEVSpiKq+1yy8SjLzuouq/SBlWdPcs1LlzRBbXEyzcXT3RBICrUFBFqf1i/tBwtQCgP9xAAypfeOIesC7z4gJuIOGZa5JpMwoIzpm9y56QDm2dyFRe4WIr/HnDFTuKdOYkzTKmVmNdEp2uBgwa1A1MGWV3XS4sR86IrUGC3ljlljqKqje8Ql71KxiG+rLA3mY8pS31/wCDWbGj5/WEF+1Ab6sq5CCmrfMdIxbKrMWIJiDnDEa5icBmeFZnEAN65heGSrKmVo7yyW1RTW1zEtX7QZ4AvJMEaziB2J4qVAHxCqwesKENZmKxIdU5WJVpjuO4e6f2mjrM3MHMKKUXBjPM6NMaiyBDD4B/wWZFbpi3dAtvmIYa7xsaCBHMbUeIauF1cZd1UIzcdYau83KgjvvCrEqLX2mLDMLkjL9t3zC3gtqNFQuCAYhxEWcqZzuEoGsh0lC9uIX681vHExCs2whQ4IHQh7RvLMsXcwLTBjUNuNQ5zqBdzLaVX1gtEFqYXw/4TQLtDzxHJVBjJ0gzRrpLqu4o8agSKGGosDBjUwpaToog1Th6wmFdajdABtuW8wdWG8c3EWH1vMTwx3dx1j+aYzhgQbG4qKmugY8QtBjHiGT/AC0eYEafTg6HMQE+RPeOZSmgH0M5fzEloKY0VeTbk95oFpqsiSqUcW17tEtGztL9iBQ4lBXWUEaEeQuBqdhEqnrqOJYcZZaZxR6/8LmWgYVPDLLDWdwfm5XeCOHEKmpeeeJhq4Fmc95ZHteb1LvsAGx6wFbN04D0hMkMr3XvCUwGAO+i4BQqRJLxl6CeVgiiVcvbmb9lykMD6cdUObLP9otXNq6QucQjR7Maqx1g+ZTYdTxuLiCjvQhj97x0uhGjGGXym4iLYVoW8ssIuxA1AERbUosxEKixQyl5lGlTqlYi39pVtcrCElSSnJ9v+IyL6IwrmB79ZStuYroxHZdwI7jCW6mrMKjMszULhCm1VAl610mMeprmKBFBPRiqkoGzvuMFzZOM7+WIhZr6fvtKHA0Mc5lKFi1dKRPfESl0rclrl+9SiShTvfL1r2l89KL+sMsKF8gpuNEya8GPxFEDtM8LBuNjW8xLK6S+8Xeo4YlBMWUvpNr6ysXwxATfOVlJrtlhCNBR/wAWgSqU8aDGKF8zAZ1F03FbqmJgkvHeX2ag5bzBsuPJ1glRpyma5i9YGxloBXuyYQGHjEcCVDd99Q/K6G+/EGRct2OsxUpYwbzzZUvQRXbnzDWhpcvWBKbHAbhfSfVBToLE86lZuX6y8XWY15mZuDa7nUdTKjUwcx6JdZCf8hgddfgYgKq5UGdyykXuRcgxDzFjGSLDTE5T+6GGeJY6ZWVU2XgpxAwaNlpfWFkg5KIMsPRQ+kYB7zL5VNpVoCzp5n2ipfpsA+sarJ8n3ZTWPzkyomImtxN7l5yBBaitTWXiVe8zBfpuGVzMJwg+4Ff8hCWdMX6oz1DrLVJm+ZquC2uZrJo3KeZZBpXhloJiWRN1VxM6lCnxCTWHiWba8Ri1L7ThjtUsae06meJXAL8QYwHpBCqywPELxNqqN4zLm0ix6RFrmLRFz1gi0MogG7mNsFf8wcChX17QGEUjjVSyi1A1cCi9xFWJDqiGEmczzBZglpie5FxDJZH5Yt49YdLMHmsReCJVHEampg7/AMReamGJwhhuBqEdZm1MpdqXn7wQfMoTOgoP+fDblLk6+ZmOD2iUFx1Mzx4mrOOZcFM0oSPWLG54y7c0XLmpd1qb0104hfIic4y6lazvmHBVeCYHrCMw5sYFTvjtxFGEp7TLUIdy0FNoL7H4gWlDLW3/AKQRWtr+SJkQthl4zKOSGm6hOLgNZc95cuNFdRaK3FsMVAZqiwVAKzqoh/5KZZm8my4leX0ixhivnEDioJiVyg8TBFWgaJmEUkl6BBgCGvb/ANeuEAZXw++5uo5DT4YN7qYMsNq3UDqwau8wHnEqq5fhZopYHWUMxYC4oU3qV6+5BrvFYR2lzdxslwqlO77Qi0Zku5XzFXDBVWc+8Eq1BeOOsPjY0Zf+wsvDPFfUi+FHrA9niGHMCpvoPMViJ1ijlvvKUgVoYoQeD7wsFx0M3AMCzJGoBmOs+sbxsRk3HqlYnMtG9QyAWjcoMRZdPmWvaGhKc2cR1ucbx1SVjABKCuD1hoOn/WyxdFAEmL3ERtPWsw6x7k9ZtlP/AJswLxGMN+WVuGoSEBZkgBmEhmBxPZj1M6VhfVRFXZc300RUzAmLwd4Im77S1aYlno57MYNqOU0BGHIXoHvNeBanyYIWm9q3FUKKT1T/ALGWbOEb8SyGoQIZiNi7lRbV3bJKBTja16TWo4U4ZRVa4igLcEpw8QkM99xx9n8JVuBeGIUXW4DcWMNEyNNzY7RDeOrG7vdMmO6ju5gd1NuZeeOMSu1N8ys0DMBWigv3/wCxhX1IMPgjLt3MrH9zdipR1mDHGINilsDF0N2yTrD7O4iap2ZiCutxq+WYr0E0hRnWe3GTaCZpzuGYTttgHM6xt/xxFaN/wNeczWpmOpjN4hhvDcAMVon5/wC2m3gr8RB8jDVYnanJMTRLQZxCzGY02gqpYdy8mYL4JsNXBnZ7RVuyUsV8EVi+qjeWvmXL6xHDUvK1HfEw8wb0mQxKK0hgavMNHzH3/wCxgq4fNuEsMbpL+RUPMx6lSYnaRLzZBdIXpM1n6x25xC9DiBWcImoC7x4lTe4lXHXUdlR1uZTEK9QDULaQHcNSl6rL94Igmn/rB3QKxCna/MJcGY3F27TYBB1n2nZe8a9HrGtJ1axHmhKa5nbMSgqqWAyj+p0YNOso4h0MTNYSne515TV5PEszW5oxUxVzABUIc8QHlzmGy+T6a/2bjZfFrcoinK2LgpqtbkIloatVSONL/tJjkfEzLaZRb4h14+02JG9tx2oiGz4nXHrOWpTirnaStMYmealeyGmIRXMxZH3g4KgdtonSiWbJlCi41Z1Hc6mQxKczTcNsdZVUDHse+eP9KVLbysHS0d6DWbPjUB6ED0D3lk3HxCxLy47sOXUqoVbcAwVesbBvUYaJQF26XF2If7cYosP1fpLzzcGXH8R1czXM8zsVUAfrDLJFLH0hZ1GTQylyfMtccR+SNjFx/wCoV2QT4ZT4ljU5iFWoJmOce8Ksr3QM4MRAlR0AHDDI3SvL/QlBqIiVidEtXgPAYP49iNwEw7gHfqGwUCIuY4LtUla44DF3v/aRXbS84Jc1z1jZu8Q1oIi0HmVCaQMHh6ywuOkx5gNyo6g7hOaIMOgphhaQHaprXzGapZMkyFhCtV9IcuJiLg8fE5alORMeswSuI5WYSDKKsh291OT/ADHaO9JrGAa61/BrKD6s2IStByVwzLcrVktxnAraBpj5eFJqOaME0eKD/ZXMar2jjXLHY4jWK/uC410j84mG5fRVQ9YgjQoOUUcwqMRzwe8sOrqWXccf6lusEsAuC0BBp0JUJDth3knZuWtKt12lr0ZqCO2E5iZbmLVZl0OYCTRiZ9aCGDnR4fH+LP2fT+P0/WWzDhJSt0ALAHCyuLeip4PimwZVeP8AZb4HeWjpFFyrjMXKllDfXrA4J+xPTSqBhSJSOWmXHb+Ii6r1mDhIY6IHdL9U88xajbqwnJDxBdFfwbGPeIBqCGoLJ3Q895WJ2EWOsVOKjWekXJZGZEdbkhE47f4CTBFCpvWmyzsjz/DqhmGLjPCqDvlvfgzkrAK8KCDyaJiNCu5AUrH+xVwaodWW5yMBu7mR8QV5gDmHxGughnBbwY0kR0qKOmLZySjKQDRVxFYqYKCGGAg5OIPAtkCsj+INYJWriJiUYbgNsQq53/AmcSxriEIGL6Rw7t1Hq4AadejDhDu6YIljY/wbg+FONALAJdFJA9DoGjgkXoCdbgw8VYQoxg2MAdW1MttM2QzrqCGQobnW4V+nJBK8HFf6xqARuXRxdA2uWiekJVmZk3iG2KhrHMHD7wHSVCzMsQTMWGdS1axG+bKgnK+kW6xUpYzB1XWF22AXX9xr7QPSEcShcodiIFXFSVFyTL1geye5jYVzKz3gJqYcQ0THOVYRr3iY5GOZuACe+hWrqb/wrrFSJTeR7xUOWCK96/j/xAApEQACAgEEAQQCAwEBAQAAAAAAAQIRAxASITEgBDBBURMiMmFxBSMz/9oACAECAQE/APPN6qOPhcslKeR2yMF/pGNf0VZtH0Q6ZZ2UTTXZh9Tt4l0Jpq17zdGf1Tl+sOiMfkUY9vkTk+kJfb0Y2qIfxGLRp/BJ88mLNLHyuUY8kcite42krZn9Q5ul0RjQlzzorYkOSRJ3yNkH+o3yWIbJJS4ZKLgyE2ncezDmWRf37fqs1vYiMPkSEi0uhyS7Y8qQsl9DlbK5IcRJdm5EZHDJfTFL4ZKG3/CGRxaa7MWRZI7l7OfL+OJCF/syiq5ZORPNQsjl0fjmyOOXyRiJUPkZKy5RF6j4I5YtUxr6IzJRS/wwZfxS569mUnmyX8D5dLo65MmRLln75OuER9PBd8iil0VrelFDSZLHFjwV/EUpQ4Zw+UQfwONcHpp7oU/jz9TPbCvsS2KvkSpGSfwuxQS5fL8aEiihrxcU+xxlj66E75RW9Hp5bZ+eZ7snPSIcvczJOkR+9VrWrRRRQ/Bx2O10QlRP9XuRCSlFNeTe+RfwibtifgnohLxsel6SjaIxtURe5Uejl+rj9eOaW2DZB9sk9sReCEIWj8X4IXEif6u0ell/6f74+sf6JGNXSM7+BLWhCEJFeFaUUUUIkSVrk9M9uVX4+s7RiVKzJzLSMW+jaxIpiEhJFG0cTaOI0PSiiirRj6aJPZkT8fWK5pEEkirbYo2xSjHgjOI3F9G2xx+S6Nwpm83oeQ3tllWbC4pjl8nEuuCqEqkZo2rIO4p+HqF+6YuIiXA+hUhSHQ8jSPzG62XpY5HZaQpIWT6LbGkyvscUK6GvknHcjA//ADXh6jtD/gVSJMchNijJ/A8U/ofHZ/g7E7Ksobo5ZQmRhJ/A012WWRGuCPKPT8RafhmVtGT9eDI6GyMXJ0Y8UVw+WKCSJSxzilHsy4YTMkHjkR5XJVEOyRQ+DmTpGHBGHfZD8aT3PkePhGTEn12NOLpkZHwQ7oxRq/CeZymkSe6Rk7EimuiE9pH1MWuT88SWdvhG1y7FHbwhkRkRw3cG1x6IZpLsXqIkvUonLcxR+yqICdSPzbJUJ3pldQb/AKMWa8tMx8sn2LRxTNrFAUUhy+hsbsj2SE+SxSKTHj+jaytGQJ8Mz5akmYHeNaZleOX+HpoRVuRg5J9+bGxCHonrZRWlkOzM1dMzQpr/AE9N/wDNaNWqHGonpny0ZOxMRYtWxsQhrRMRWtjGQXJmd5DLG5xMCrGtcyfNHp21NGZci1ssskITI8jQ2tI6Nlll6YyXLs27mhKlWuSNTY+JIzK1eieliYh8jdCTasTFId9iYnRusss3FiOoNkUYU3Pwz49ytdlbmdwJqhC1TNxKL+BcG9ik2ONkI1yyyyy9YoyfxSRFN8Ix41BeOXBu5j2RhKMKkTQxa2VpQ0JUVo/CxECUJSlwjHiUF5zVomuR6JliFokzY2fjbPxscWh+KMaF17DMq5H4JiViikb0j8kRZEfkFL7JV2N3pQhGGPPtZ4/I1qyiKS+RJM2pjxRFiXyKCQ6JbRiWiIowx49rJHcicaY9UyxZGiOeL7Fkj9n5I/ZLPFdEsjl4oxxtkVSr282O+UNeW2z8YsRtrVi0ijDCufcaszYvkarVCRFCRQ0NeCVmHFfJ17uR0rJ41LlDhQ0IQhSHIbGxsoqzHFJpMSpe9l/iWPnscRxEIvRvRLTdXR6dXNe/m/iWbixjWlm43Fll6em4l7+d/qNlllll6VpelaYnTE7971L4oet6XpRQkVpQnRgnarw/6XqPwYd3264P+d6v83q0oqlT9nPO5D8KKKKKKK8Mc3F2Qmpa5MUMiqaTX9mP02HG90IJP+kvYzZNiG7d+CKKKK80RkQzfDE0+vZbpGWTb51Wi8vgZVD8EQm10Rdq/D//xAAtEQACAgEEAQMDBAIDAQAAAAAAAQIRAwQSITEQIDBBEyJRBTJhcRQzBiORof/aAAgBAwEBPwD14NJLJzLhEMccapIbf9Dkizd+RUZX9yGuDobI0zUaTdzHsacXT95Jt0jTaRQW6fY2uhyk+FwVFdsbfwiyNCRk/chdDXhNfJFWuDPp45Fz2ZcMsTp+4k5OkafTRxq32Nj64EjhDNtkUJUjLW5EVwUUJEW1yKSkjLiUlTXBnwPE/wCPb0en2rfLschlm1vsjBvpCwt9koJdlNIb4J8yIdG1jg/kpojXaHH5RGV8Psy4lKNNGbE8Utr9nS4t8rfSJSrgujl8Ix4zHp75GoQ7ZLUY0Tzp9EpjlfYuCPJCkJxkuR6dPolgkuUL+ScbIyvg1OD6seO/YSt0jHFYcdfIuFb7OzFib6Hlx4uuWT1eWXzQ5N9l+L9Fik0RyyRDVyXEuT7Mv7RpomhO0avHtyWun69Hj3ZLfwXud/CG3JmOCSt9E8jlwuEUV6H4sv0qTT4MeVZeJdk406Ze1mrhux+vTR24v5ZPj7UY4X2Slfl+mxMssTF5RCf1I0+zJEj9y2syQcJOL9UVsj/Ql8sSqIvD8vw2X4XhC8UUJ0xyvkktrs10ampfn06eO7IkTXSILdIkIYx+GPwvC8LyvMXwLlUa6H/Wn+PToY/e2TdcmBfI3z4bLH4Y2WWLyi/C8xfIuGayO7E/ToPkyu3Rj4h4ckuxKxxdWfNDQ2SbNxuFI3ikWL0JnRP4Y1vg16dBxFsnJ2N0khyo2SfbJRlxTIxmuxtVyUroeLjgcCWMeMWNixCx0hYmxY0uxUbW0bV0Si4/yXZdwoxP4MiqTXo0b+2SHzMb5IvkabHFkJTQqb5Pp2NUqQ1ZRtFEoSL/AASivkc0ukfVkj6kiOSSJNWRZjlTNQqyy9Gk6Yv3idsxxNpsY3FfIskL7Iwb6ZVdlJklQ3QpWI4L/A4PtkpRXyRSl0bTaTXIuGSe1msS3pr5Xo0r7SMfLsxohQ5KKsz5ckluqkZcjs++LbfRh1M8dUY5LLj3EpJPg3WTsi2J0R5IRUI7marVSm2kOU3TRjyuzBlmlclaHtauJNWNck+rNTK2l57MWk2Y20JbYGNcG6iE/wAk6yInoZdI/wAGS6IaNR5kPLtX2oc3J2Qdk0JE+De1yhZt/wC4yaaMuYktE7Mehfy+DHWKNIlltjkTXJVxFpVmhfySTi6fjTrdliv5RPAv8a49mdJcEOhiFNo+rwfWdUSm2U2JEFRMiicbRRVCm10LO/kWRDlfiiaMC3KjSYfskn/ZrVWeXjTussf7RqMk5bYR6NXHa0Y+hoa9KIoRIiMkvDKEyxIoydGki3HcjT5N8G32ka//AHvxF00yE7yWfqEftTMPRQ0NDXlIihkhM7HwPxRRQhGXo0q26dGmyVimzWS3ZpPzppJNWayKlidM0748Pw0V4QlSGmStEW7IpklaJcCEUUUIzdEOMaiKX01Ibbdvzgmp4kQVpowOnRQ0UUUMgOPJVkocmwWN7SuBpM20JFFCQ+D92RIcm+LNVJQxNL59GkzrHLbLpjm8fNWVtysi+BjXhjQlRDJCUfu7Hmr8DWOXI3jjyR1ddmbPGSqKPkqyiijokzBW6UpfBOSinJ9GbM8srfp0+sePiXKJZoZMu6JB8eGiiihss3EZMcnITvvwkIoooZN8GPNjhB7n38GbPLK/49eF1IxvgQ/LGUKNii0+iMW+kLGxxrsSF5YzM6Q3b9iLpmF3EXo2myV9GPTyfZDSH+LJdIeml8IejkuyWnJ6WV/abdrpliYxmpnUfa0k7VCYh+FJojqH8oWaxyn8Ec2VfI88+0LJOXZPKomTNKfHixDZJ8Gplbr2sGTZIjK0LzRRHvkTmuh7yLmuEhuXzwTfJXoZlnSJy3O/b0ub4YvSzfR/kNfI9Q38m+yxeH4k6NTlt0vcjJxdo02oUlTFyV4sZKxssiJi8MfBqM9cIbv3dMrnRjyOPEhNPw0MaHA2CiKPozTe1tDbbt+9pv8AYihcdCkXY0NFDQkJFFM2r5NY6xv39N/sEiiheKs2Gw+mbUiq8Nms5g/f0iuZERQkULxZZY5DY2Zlaoap172jj2xeExC8ORuNw2OQ34kjU49sr9H/ABX9Nj+oa542k2otpPq+Fz/7f4/PB/yn9KWj/R5Sm7lcfjr+vZ02PbBCLLFIUiyyxsssb85ManGieJx86fVZ9LPfgm4v8ptP/wCGo/VNbqYfTzZpSj+HJtf+N+xp8W+VvoiqVeL8pm43G4ssfoROFmTBfKGmu/ZirdGKKiqRfPh9+GWX6WPyhjROCa5JxUXS9H//2Q==",
      "objects@common_capturer_uld_fda": [
        {
          "id": 1,
          "class": "face",
          "templates": {
            "$template10v100": "T5JnWgcfMPHQANMdP8NA8FwPQJLc5TDfcJFVFS/tYgEw9yNCISDQAiGU9iVQDwAA0BM6AhOQAcorXw5b/msC0AzwvQJfO34SzSACyQ9qYvom8gAMAHQP3lBgyQB/weXffCAPC1bUxw4GA10E8DADewH70SNzBsBdCwQRDyAPNTAfAOHjEAICAuQSAR8uEjQPVBIB3j2xCbDuTbAdIMGRLgAhFwIfDdQlUcID/w4/LfDvMEABQOEn4w8uBvAeFz/k0UAgA/QjDwESnA/0cDzAE9UCAO61JwEjEgAvINNRDhkdCUEg5UEO9ycL9FHzNBGSAmxABf4GK3QCnSFh8SAQAUIRJAWxTCQVAAHF4E1SIBAfIn2eMReb0g=="
          },
          "bbox": [
            0,
            0.21308482869466144,
            1,
            0.9869169769287109
          ],
          "$cropImage": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEsAOEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKjnnitoWmmdUjUZLE9KAJCcDJ6VzGteLbex/dWpEsvQsBkA+3qa5vxL4vmvZXtLFjHAo+c5wcep9PpXAX+srCSiSSGUjty7f4CuedXpE6adDrI6XV/ELSkvdXDBz1RfmkPt6CuXu9ckMnmRIkRHRpjvYf0H5VjT3U7E4ZImI5HVvx9KqBIY23TXAyfQ5JrNR6s6NtEXJdQubuQh555Se24KKntlEeS4gX3eSoLUW8jgJFKc9N3ArWS1jC4VGaQ9PLiBx+JFWiLlqG5ITdE0WPVWx/M1dgvZyu2SMezLLz/hWTLazxKA2c9T5jgUsBlaQAKcdsSZ/lSZSO20+N3sZnIw23qe/wDSsNbhxcMM7/xAzXQ6QHGlzbhkFOK5C8+S8bexAz2H+FD2Jjq2XbyXzYjhzCR6NxXPTPMr7jHvH/PSNsGtrzlZNySGTAxtJ6/nWHfy227Gxon9uKBlqw1Eo4eK481+4kXbIP6GvR/DPjQRstrdE7eyt1HuK8gMyOQH2TenO1//AK9aVrcMkY2MZo1OdjnDJ/hSu4u6HyKasz6OgniuYhJE4ZD3FS14v4f8XXOm3YVHZoyPmhc5JHqvr/OvV9J1m11e2WWBxuIyUJ5FbwqKRyVKTh6GjRRRWhkFFFFABRRRQAUUUUAFFFFABRRRQBDc3MVnbvPO4SJBlmNeS+JPFlzqk0gSTybaNvl287f8W/lVzxp4mOqXbafaSlbSA4kdf429q831PUgGEUYB2j5UB4H1Nc1Sbb5UddGnZc0hb7VnZDDA3kw55c8k/wCLfoKxJLnYpWLMak/MxOXb6n+gqOWUluTuc/h/+oVVklw20ct7cY/wqUjZkxmY/KOB/n8qarKvIbJ9R/jUSxswy5AX07VYij3Y2ISPVhTC1yaCfa4Pzfjmugsrl5F+ZTgcjIJx+Gaybe2YuDj+tdbo1k4QERNg987Qfzpc6DkZELRSoZBJvPUtGqj9afbW5ecfIdwP8IH9BWyLFWOCvzd85Iq1DpjeYCrHj+4mAKlyuNKxq6ZEyadMrDCFeMcVx+oRhblshZBno4NegwQLHYtGzgORzu61yeo2jiYsAzjuVAP6VUnoiIbswJZDFDkBkPXbnI/DNYN7MZGIJJPowxXT3FuHT/VsOOfkx/Kubv4FBwmDn+Fsgj6GkmVYySEbIbcnuOQPqOo/WrMFzcWZWQjzouxBz+R/pVdlKON6MPr1/PvUsfGXjbj+IAZB+opsEjahlt9Qh3wkNjkp0IP9DW1o2u3Gl3KO0rqu7ic8YPo/p9fzrjDG0Ti4tG8uQDPHT/64rVstQF0u1gEuFGHjPIYeo9R7Vna2qLeujPoDQdcj1WDY5C3SD51HRvcVs14T4f1iSwuY0SUoIyPLZjny/b3Q/pXsujatFq9iJ0GyRTtljPVG9Pp6V1U6nNo9zhq0uR3Wxo0UUVqYhRRRQAUUUUAFFFFABXH+PPELaXp66faOBfXgKg5+4nQt/SusnnjtreSeVgscalmJ7AV8+eMvEL3Nzc3sh/fTnbGgP3U/hX8v5ms6krKy3NaUOZ3eyMfVtUEAFnbMGJ4YqeWPr/ntWC7EZJI9zj8gKTlE82Q7ppO3oKrSMXfy0OT3b0rFKx13FklZyY4uvc9/xNSwQAHjBPrU1jYSXMiwW8Zdj2H9a9A0X4dNKiSX8hUddi8VMpdEaRj1ZxFtZmVs43n+8egrobHw9dXQXyrV398YFen6d4X0uwUeXbKWH8TcmtpIEQYVQB7CsuWT3L9rFfCjzmy8G3u395tjB6461t2fhRYSC/JBzkmuu2ClC4qlTRm6rZlwaWkePlAA7VcS1VV4AH4VZCj0pw6VaRm3cryxLIuNuDjrWXPYDBAViPxrcxSED0oeoJ2OOutIZ14GB71zuoeHLlgdkYb0+XNeoGMHqBTGhRuqD8qhxNFOx4Zc6Lcx53wuB9Mj/Gsua0kjfchZWHQj/PNe/wA2nwSrhowR9K5/VPBtjeqxTdDJ6r0/Kl7yL5oPfQ8igkQybGIjfv2U/wCBqaazkyJYmKspyrrwVNa+u+E77TizSIJI/wCGZF/Qise3uJIv3co3DpmmmDjoW7S7kuDt4S5jHzDsw9R7e1dv4P8AE72N8hlyExskXrlfT6jqPxrz2cbSHjO11+aNx/KrdtdMxEqqdw+8q9QfT+oprR3Rm0pLlZ9No6yIHUgqwyCO4p1ct4C1cap4djUuGkg+X/gJ5U/lx+FdTXbF3VzzpLldgooopiCiiigAooooA4/4ian9j0D7MpAa4Pzf7g5P5nAr58up/t9/JdOf3EeQD6j/ADgV6N8XdYaTWBp0LfMsYQ46jPJ/z7V5ffSCGFbRCAiHLEfxN6fhXPJ3kddNcsCrPO00hCjBbjj+Va+gaDcaxci2tRx/y0kxwo+tUNN0+a/vYraJcySHv0Udya9w8PaRb6NpyW8C89Xc9WPqaiT6I1iurDQvDdjoluqwRAyH70rDLE1vp0qMelPUnNStBvXcsp0qQVChqYUybDsUYpRS0xABTgtKo4p4HpTsK5Ht4ppWp9vFN280WC5DikxUzLTCMUrDTIiKjYVKaiakUivLCkyMjqGVuCDXnvifwWUD3eng7erRjt9K9GIpjjcpB6VLjcqMnE8GX5iYJMqwPynFVYrhrOXDZweCB6f4iu+8Y6AsbG9t4vlPLqo6e4rhrmPzUD5Geu4d/f8Axoi+jKkuqO/+H2sjSvEEEUj4tb0+WCOm484/PkfU17dXy/o8zz7LXdslRw0Z7gjpj8f0NfR+h6iNV0W1vB96RBvHow4YfmDXRSe8Tjrx1UjRooorY5wooooAKRmCKWY4AGSaWsLxjfHT/CmoTK21zEY1Pu3H9aTdlcaV3Y+fPEmpG91m/wBTcgs8jEc++FA/z2rmGDFldjlj0z+prZ1KEK0MLHoPMI9z6/hx+JqtpNqb/UgzDMaEZ+tcyfU7rdDtfBOki3i+0uv72T17D0r0KE4AArC0qERQoAMACtuPtWd+ppYuIc1MlQJ0qdPWmSyZfpUwqJBmpQKaEPFSAetRrUyiqRLHKOKdjB96UEU1h71RApppPFHSmsaQxCeKY1KaaaRSGNUdSEUwioZSIz9Kic1MRUMlFwKF7As8DowByMYrx/W7Q6RqjBlzbu2fp7/417NIODXC+M7BZoSxWlYpM4lle1uY51zgYI29xXuPw4vxcaddwBsqJBKg9mHP6j9a8R0w+fEbCRsyJloG/vDutelfCq5+z6lNZNn5ozs+nUf1H4VdN2kjOtG8Get0UUV1nCFFFFABXE/Eqb/iT29sSAkkpdyfRR/9eu2rz34nuVtIB6oVH4kZ/QVnVfus0oq80eG6jLtEsp4klbA9hW14VtQpUnrjOPSueviJtQSMg7UGSK7PwpbjyvMxy3NYP4TsjrI7O0G1AK0ou1Z0QwBirnnRW8e+aRY1HUscVNirmlHU6gViDxBYLkCTOO4FWY9bsS4Vp0Xd0JPBosLU2UqUVWimSSPfGyuP9k5qdHBxTQiVanUcVEmKsptNWkZyY3B9aTmrG0EUmwVVieYr4ppFWTHTfLpWGpIr4ppFWCgFRkCk0UmQkUw09uKiZueeKllCMKryCpWlRerqM+p61GXV/uspHsaVhlV6wfEFp9osJBjnH5V0Eo5qncxiSJlPcYosO54jMZLW8WRDtkhk/I/5/nXpHga8iTxRZToAEnBUDPTcDx+BBrivFFn9l1JiRhX+U/XtV/wjdlSjgnfbyq4I9iD/AEB/E0nupA1dOJ9G0UiHcgI7jNLXaecFFFFABXm/xScKlszH5VQsf1r0ivLvjFldOhI/jATP1NZ1VeJrR+M8Mkkd5yT9+Vufxr1Hw7biOyjAHAFeYQqZNRXHIyP1NexaVB5VjHx2rOS2OiL3LUkyWtu00mcKOg6n2rjdWudU1yQGGBxGpOwKMgf412UlqLhl8z7g/hrVtLeGFAqRqoHoKnYvc8nm0jWooxJHG24DnGQfyqvFeXsICXJcL3U8j8q9sVIz1AP1qle6NYXasHgQ5HJAwafNoC3PNLTXLi3l3xSeX2yDwP8A61dRp3iya4jEcjgSg/I47n0qtfeCIlkMtrO47+W/INYUvh68t58lCVByNppXRdrnpWn+IVuiuR95c/Qg4I/lW1Hd7gCrcV5/pcMkEqyEsS3UH1x1rpLG4aNAkh5xxSuJxR00d0R1OamW5BrFSYHoamEvFPnM3BGqbkVE91jvWeZfeonm9TRzsFTRde9GcE4rNu/EFtbA7pBnOAM9azr27dUcry2Dj+Qri9RgunnU43HH3j2zSuaKCOkv/Hcar/o6AqB8zk9K5q58a306tKsnlocBR35qoPDV7qUqhARCTli/GT3NdLp3gi3Ta9zIXZegHSquhWSOUa51S8lLebKC3djU1vDqVuQ8cgjk6FmY8f416RDoNjEqgJkjoSen0pf7C09ZPM8hS/8AePJouxcyOW0nxNcwOLfU3WVCcCUAhl+vHIrqgySxh42DIwyGHINV7nQ7GbJ8rax7qSKLDTxY70jZjEeQpOcGkJ26HE+OrMeWJscHrXMeG5fJ1RUYgLICpOe9ei+L7TzdIkOM45ry6zlFteRsTmMkZ46Y6Gk1pYFLVH1FpknnaVaSf3oVP6VbrH8LzfaPDVjICDmPqPqa2K6ou6OGSs2FFFFMQV5f8YQXt9LjAzukNeoV5z8W4V/svTbhgSsdyA20ZP8A+rg1M9i6fxHiVnBt1P7vO7Az69K9hij8q2jXGPlFeb6ZZpPraOgzHJLmM+q+tenXAwmB6YrKWh0RKr3AVwM4xVuK8UAEnFZE8UgJbmszU7trSzeRpNgA/H8KxbudMYqx1E2t2ttxLMqnsM81WfxTYxjLuVH+18v868wt77UdTvBBYo1tG5+ad/mdh9aNR8NvBqMUU8ryM8W4PKc7mzz/AEraNJvcxqVVHZHpP/CZaW/C3MR9jIo/rQ+s2ky7mV0U9GxlfzFeU2FjJJGLKbS1WRJmeS98w/MmMBNvTrzmvSfDHhRH8PCcPJDKWbYyfxLnjIPB70SpdmTGur+8i7kMu+JgVPpTo55Ffms1IbiwvPLlHlgnAYfcf/A1t/Y3ZA201gt7HW7JXLltOzgc1pRhmrKgjMRFb9mgIBNNGUmVXBWqkshxita6jGDisqWPcTTaEpGfI+84x7U0Qp95wvHc1ZaLALbScVh6jJJO5hRXkI/5Zp0/4EalmkVcvNrNlbZAYvtHOwZx+PSpI/FWmrjfMqfVl/xrntZ8MztoElzLIxcY+RDhUGefrXn99afYjc2p0hpzPEgtp1cgRMDySOjZHHNbQpN7nNOsk7I9tj8Q6fJ924WrKX8My7o3Vl9VOa8V0zw/dTagYIJ5IWMRcmJj8vTGfbNPTVNV0W+EF4WRVP8AroF6/UdP0pyptBCopHs7Tgng0+N9y4rlNE1lr62R5CDnow7/AOH0rord8ms09TSS0Ga3B52kzDGTtrxi6hKXp2DhsnGOh717pcJ5tlKnqpryfULLF6ONpL9R2I7/ANKvqZnrPwvvBdeExGGDCKQheeQD2P45rtq4n4aWQs9FuypBV7k4x2wBx+ZNdtW0djmqfEwoooqiBGYIpY9AMmvJPF2ttqJmhdtu9WRAegHavUdSYppl0w6iJv5V4rdxlr2VpQwRSAuByD61z1qnK0u524Sj7RSl2IdAtg+qW4wPkxnHSu3KB5MVz3hu3IkMpHJyeetdNFgyGk3dXGlZ2HfY0deRWTqehpcxsNuOOcd66JOQKc0O4VCRSk0zgrXT109trwho1Odw+8D7VfvbXTNWgSO48xWz8jAYZW9q6SWxSQ8qPWo10uMOCQTgYFWpyjsOSjP4jm7LwzYCZDcXssseQVjAC7uMjP4CusWceUsNuUSIDaoUZAFNXTYg6tsywxg1citlUcDFVzyZn7OmtisunJIjLNKWVuq7Rg1ItusUXljoOlXNoAqKQflUNId2zPkjCir9kcIKozHLcdqt2Z+Wp6l20J7g5QmqSIGzVq5PyEVWhOGo6itoTC3R4/LPAPUiq76asMRjiZAvoV5q+vHansgce9UkibtGUDiBoZQjxlcMrdxXLXvhiBm3QXjxR8ny2QMAPY128lqGB3LxVWTTYyDtGOMcelWpSWxLhCW5zGn2mn6PFIkYklncgPIw5Pp+HNZ99pT6nc8W4SMn5iR8xrtH09X61PHaqvQDNTKbluXBRh8JhaZoEFpEpWNFbHOBWslsqDirwjwMUhUAYqbA5NkAHyEe1ed6zGIruVSoG1wfT/I7V6MODXG+JbIPfB8cEbTnuKroTFXdja8Ja21pZLEy4Ac7o8fr7GvQ45FljV1OVYZBryXTreS3WM8EsdpIHWvT9IJOlW+eoXH61dOd20TiKXLBSL1FFFbHIVdQXdp1yPWJv5V5ldRKFm3HaezBfavVJF3xOn95SK89vbUG0kJ61z1o3kpHZhZe649zM8PqdsoPatWN8SYrN0RSk0w9RVkybZz9aj7JrJWqNGzE4wKtKQeKzYX4HNXI34pXBosbAacEFNVqlBzTJYBKXGKWlNMQw1VmfHFWHPFUbh9opNlJFV2y+BV+0GF61mRZeTNatuhAHFSimOuOVNVIj82KuTISOKoP+7kzTEjRibIwanAqrCwYAirSU0S0OAJFJtB6ingUhqiSMxj0pu0CpC2KjZqBjWOBUEjYqR2xVaRuKTKSBTlqxdaCtfJGy7gRk+1asR3OKoXkRl1dmIyowtEnaIQV5jooFRYlHQyDHtxXaaTxp6D0J/nXMNb4vIFxhQN36V1WmpssIx65P60UVabDFSvTiW6KKK6jzwrhtQXckoQZKseB9a7muJ1C3+zalcKGILNu+oNZVVodGHdpHP2k4jv4xgrvJXkVLcny7g59eKS92x7HPG1g2ffNGodQ4+tYxXutHVN3mpF22kyorRiasC0m6DNa8MuQKlFNGipqZTxVNJOKsK+RTIsTg07ORUAepVPFNMTQ2TgHNY08vmM3oK1rlv3bfSucjuA8RGfrUsuCLdq6hwK24CpHXFcPPqkFpdpE08ayE/KhcAn8K37fUVaEMDQmEom7IF25BrLunQHFR/2iu0/NWDNrttNqP2YXEXmZ+4WG78qbYRizoreXY45+U1rxFWFc1FMGZFB6mtuNmUA0Jimi82AKiY00S5HNMZ81bZmkKzUwmkLVEz1NyrBI1VJW4p8knFVXfNK5Vie2OZfpSFFM5b+LOaZFkQyMOpGB+NTRosbKQM8d6cuiFB2bZdKeZLEcckba6VFCIFXoBgVz2nI8+oITyqfMcdq6OtqS0uctd6pBRRRWpgFY2vaY13D9ogH+kRjgf3h6Vs0UmrqxUZOLujyfVpFNqueCzbDn+H61I7ebpkLnqUFdprfhqLUg0tuyxTn7wI+V/r7+9c5d6Pd6bpiJchN25gChyMdawUXFs6nUjNJ3MOFtrYrVtpe2axiu1s5q1BKRjPWsXudK1R0ET5HWrCtWVBNkDmryye9Ami6ripVcYqiJKcJM0yWixI28Fa5G+0zULa6ka1HmQSHJUHDL9K6pTmlK5pPUqMuU87l8KWd0zu1s4nPO6T72frUltBqdjH5DBpEHCvnnHvXeiBS2SBSy2sZXOBSsU6t9ziEt9Rux5YJjU9W7/hTh4PhGNkCGQnO89c+ua7OK2jjYcCpmjCnIosHtWtjF0nR57eTzLqUOR91VHArf/hxUangUrNgU9jOUnJ3YF9pppkz0qJ24qHzD2NA7FgvUTycdajaQ1C8mRxQFgkeoMknFNZ8mnR8uO9OIpMlu5Ght7dF/jYk49BVu2VrgxRwjcz9KLnRrzUZo44o2SNVBEpOADXS6ZpcOm26onzPjBc962UHJmDqKMfMlsrNLOHYvLnlm9TVqiitkrHK227sKKKKYgooooAKyfEUPnaUxxypzWtUF5F59pLH/AHlNDGnZnk7qN5GKUArip7pNl06kd6Zt4riktT0oPQsW74NaCOcVlRcNWlHyKgtk28+tKsvNRsDiqEt15GWbgUXEb0cgqbeDXOxa1b4OZFFQ3PiaBFIRxn1JrRIlRbZ1HmKoySAPegzwuufNWuBfxI0r/LuYfQ4qZNZGwl5kCinZGqoSO1eaOMAvKMdsVG2oQZxk49a4tdYV2XMhC4zk9KiOrs43xpIU7HaaPdK+ryO9SeNxlGBoeTivPxrrQ8uJIz1yykcVdg8WwOuwyB29F5P6UmjOVKSOrMgPemdTVS0eS4iWUqQrDIB4q8qYqCVoRv0quxIqzJjpUD4zTAixk1ZtU3TqMd6hxitPRoPOvY8jIByauCuzKo7I66JPLiRPQAU+iius4AooooAKKKKACiiigAooooA878T2htNTdgMK3zCstDlcV3fifTftlgZUGZIv5V5+rFHKt2rmqx1udtGd42JhkGr0L8VRB5qeM+9YM6DQ4IqOS0hmUq6hgRgg01XwKeslMDAvfCGnyH9208X+yspxTbbQba0wRCrkdGYZI/E10bEMOapTCSH5oxuH901akkUpyQW0VsFCsihjxyKsPZ2bAAxoQOOlUftlqW/fhom/2l4/Op476xGP9Iiz/virvFmnMySKytEAUxoB9OlR3ENvGmAoJ7YFJNe2AO5rmIH/AHxVcXtvIwEQeY9tqnH50/dQ+dj47MTqNy8f0rQs9PtrZt0cSbj1O2o7ZJJADINo7KKvg4H0qHK5jKbeg8gelJkYqNmOaaWyKggSRgTUPUmlfk0zOKEDF6mum8PW+FeYj2Fc5bxGWZVUZya7qztxbWqRDqBz9a3prqc1eXQnooorc5QooooAKKKKACiiigAooooAQgMCCMg8EV574m0drK6M0S/un5B9PavQ6gu7SK9t2gmGVYflUyjdWLhPldzyWKbsauRPnvSa7o0+k3TZUmI8qw6Gs2C6AIBNck4tM9GElJXRth8inIeeKopcA45qzHIDUDLiZNSCPPUZFRxHOKuRY44poGyA2Cy/wj8ajPh+F+TEv5VsxBatKoNUo3Ic2jnY/D8CciJPyqylisXRAB7VtlAOaruFziqcLC52yjsCjpUbDFW3AAqq5wTUjRA3WkzgGmyMBUDzADrSKHM+CaZuyfWq7T7jgVt6FpD3riWQFYV6n1+lVGLbM5yUVdmp4f07A+1Sr0+4P610VNRFjQKowoGABTq60rKxwylzO4UUUUyQooooAKKKKACiiigAooooAKKKKAOY8dSvBoInRQ+yQZUjggg15QLyC6bMDbJO8TnB/A969Z8dgHwzKD/eFeBXaMkhx61jU3szrobaHTpfMjYbII6g1o2uoKxHNcPFqU6YWQ+Yv+11H41fh1GMkclD71i4nUpHoVtchgDmtOGUGuDtNT2Yy2R6it+11RCB8wxU2sDR1EcuO9W0nIHWsCK+Q4+arAvUx96qTIcbmubg461CZTms/wC2r/eqOS+QD7wp3DlL0k2O/NUpZwB1rPn1NBnDVm3GpZU/NgepqSrGjPeAZ5qg12ZGwuST2FZE+ooBwSx9qqi6uJ/lB2IeoXjP40Dsdfpawy6jDBIweR3AKL2+pr1CKJIYljjUKqjAAryzwVbbtct+OFJb8hXq1dFLY4cR8VgooorUwCiiigAooooAKKKKACiiigAooooAKKKKAOY8dNjw+V/vOP5GvE7qEOTx3r2Xx/IF0qFO5YnH4V5PIm5jXPVep10F7pgSWxyeKi2MprcaAHtVeS09qzudNihHK6HgkfSr9vqMkfXmq7W5HakEJFJlI3YtZx3arA1v/aNc6sbVMkZzSLsbp1g+pqJ9YJ6bjWaI2Ipy256mlqFkWG1CaU/Lx71GxeQ5JJNSR259KtR2w9KLidiosDNV+2tsYqxHb+1XY4cDpTIbNzwioh1aI+uR+dej15npLmG5R+hBzXpEMomhSRejDNdNJ6WOGuveuSUUUVqYBRRRQAUUVlza9aQeILfRXWX7VPEZUIUbMDPBOc5+U9qANSiiigAooooAKKKKACiikJABJ4AoA4L4gXGZoIAfuoSfx/8A1V5+U5rp/FN39u1WaQfdzhfoKwFTJ6VyVHdnfSVoohEOT0pGtuOlXkiqcQ5HIFQa3MJrbJ6VEbfnGK3mtgc4AqBrbB6UFJmUttx0qZLT1FaKQ9sVMsQx0pFXM9bXHapltvar4i9qesJzTsTzFJbfHarEdvVtIeelTrF7U7EtldIcAcVMI8VYSIgcinlABRYhsZB8rV2vh68Etubdj8y8r9K4tVwa07G5e3lV1JBFXCVmZ1IcyO8oqlZ6jHcKAxCufyNXa6k7nG01uFc34y1RtK0RZg8iK8yxu0f3gpyTj06YrpKyL+KO81m2sbqGKe1a2klaKVAw3KyAHn2Y/nUVE3FqL1NKE4QqxnNXSeqOC8H6v/aHjGFIUaOERSHBckscd+a6m9uxb/EKxjAvR51tscqpaE/fKg/Lwc9TkfwjHcXb3TrHSkgubCytrac3MMReOFQdrSKrDOO4NYd7PbP8YdNgCRNOlg5LAjen3uDxnuOM45zUUKcoRtJ3Z0Y/E08RVU6UeVWSsd1RRRWxxBRRRQAUUUUAFYfiPUxaWhgRv3sg5x2FbE7mOB3XqoyM157qEz3FwzysWYms6krI1pQ5nqYV2hY5POarKlabqCORVQKN5rlO1BHH0qwsWc8UiCrEY5oFch8rNNeH2q6FBB9qCoNMdykIPanC35q4EHpT9oBoC5WWGpEi9vzqUAelSqoApiuQrD7VKIwB0qQdKTPzYoAbt4xTShxVggLwKiagREF5qxHkCoxUi8UgNC2mIABNbVpqbR4WX5l9e4rnU4Iq2jHFaRk0ZzgmdbHKkq7kYEVnalHcQ39rqNvA1wIkeKWFSAxRip3LngkFRx3BPes63mkjYMjEGt61laaAM2M+1bxlc5pQ5TLnnl1ia3t4bS4ht45kmlmuIzH9w7gqg8kkgc4wBmsm7aI/FGwQM4lWyZyBKQGB3j7uMHp1J9PSuxqPyozIJDGpkAwGxyB9aogkooooA//Z",
          "keypoints": {
            "left_eye_brow_left": {
              "x": 0.1554061550564236,
              "y": 0.3466766866048177
            },
            "left_eye_brow_up": {
              "x": 0.25802788628472223,
              "y": 0.3236322784423828
            },
            "left_eye_brow_right": {
              "x": 0.3854702419704861,
              "y": 0.3430420430501302
            },
            "right_eye_brow_left": {
              "x": 0.6136109754774306,
              "y": 0.345932362874349
            },
            "right_eye_brow_up": {
              "x": 0.7370150417751736,
              "y": 0.3286321258544922
            },
            "right_eye_brow_right": {
              "x": 0.8359405517578125,
              "y": 0.35814239501953127
            },
            "left_eye_left": {
              "x": 0.21608330620659721,
              "y": 0.4157813008626302
            },
            "left_pupil": {
              "x": 0.30088453504774304,
              "y": 0.4109149678548177
            },
            "left_eye_right": {
              "x": 0.3838650173611111,
              "y": 0.4230572001139323
            },
            "right_eye_left": {
              "x": 0.6079323323567708,
              "y": 0.4287389628092448
            },
            "right_pupil": {
              "x": 0.6891607666015624,
              "y": 0.4170384724934896
            },
            "right_eye_right": {
              "x": 0.7724110243055555,
              "y": 0.4233682759602865
            },
            "left_ear_bottom": {
              "x": 0.1043272230360243,
              "y": 0.5988115437825521
            },
            "nose_left": {
              "x": 0.3953646511501736,
              "y": 0.5805702209472656
            },
            "nose": {
              "x": 0.4884576416015625,
              "y": 0.5780504862467448
            },
            "nose_right": {
              "x": 0.5848392740885416,
              "y": 0.5861359659830729
            },
            "right_ear_bottom": {
              "x": 0.8565327962239583,
              "y": 0.607865956624349
            },
            "mouth_left": {
              "x": 0.33830030653211807,
              "y": 0.6955980936686198
            },
            "mouth": {
              "x": 0.4904075113932292,
              "y": 0.7090469868977864
            },
            "mouth_right": {
              "x": 0.6333636474609375,
              "y": 0.6958428955078125
            },
            "chin": {
              "x": 0.4895579020182292,
              "y": 0.8763695271809896
            }
          },
          "age": 23,
          "emotions": {
            "neutral": 0.9834117889404297,
            "angry": 0.013813868165016174,
            "happy": 0.002322095213457942,
            "surprised": 0.00045228638919070363
          },
          "gender": "FEMALE",
          "liveness": {
            "value": "FAKE",
            "confidence": 0.801980197429657
          },
          "angles": {
            "yaw": -0.8611235618591309,
            "pitch": -15.951218605041504,
            "roll": 1.7437981367111206
          },
          "mask": {
            "value": false,
            "confidence": 1
          }
        }
      ]
    }
  }
}
Create a Sample
This mutation allows you to create samples and get information about faces in created samples (such as gender, age, emotions, keypoints, liveness, mask presence, etc.). The created sample is automatically saved at
Server.createSample(
anonymousMode: Boolean = false
image: CustomBinaryType = null
pupils: [EyesInput!] = null
sampleData: JSON = null): [SampleOutput!]!
anonymousMode: Boolean = false : If you have to work with anonymous data, you can set anonymousMode to true (by default, it's set to false). In this case, the image is not saved at 
image: CustomBinaryType : Base64 encoded image 
pupils: [EyesInput!] : To increase face detection accuracy, you can specify X and Y coordinates of eye pupuls. 
- EyesInput!- leftPupil: PointInputType!- x: Float!
- y: Float!
 
- rightPupil: PointInputType!- x: Float!
- y: Float!
 
 
sampleData: JSON : Sample data is the face detection result, not saved at the database.
SampleOutput! : API returns JSON file with the following fields: 
- id: Sample ID
- creationDate: Sample creation date in ISO 8601 format with time zone
- lastModified: Last sample modification date in ISO 8601 format with time zone
- data: Image and/or template and/or detection result in sample format
The returned sample is automatically saved at
Server (if anonymousMode is set to false) and can be used to verify a face to a face or seach a person in the database.Incorrect input errors:
- No data has been entered to create a sample:
{
      "message": "One of the parameters sampleData or sourceImage is required",
      "code": "0xnf5825dh"
}
- Invalid transmitted sample data:
{
      "message": "argument should be a bytes-like object or ASCII string, not 'NoneType'"
}
- Transmitted wrong pupils coordinates:
{
      "message": "0x8905a659: Assertion '( transform_m(0, 0) * transform_m(0, 0) + transform_m(0, 1) * transform_m(0, 1) + transform_m(1, 0) * transform_m(1, 0) + transform_m(1, 1) * transform_m(1, 1) ) > 1e-5' failed, error code: 0x8905a659. wrap code: 0x7df96daf."
}
Example Request:
mutation{
  createSample(image/sampleData: "your image in Base64 format or sample data"){
    id
    creationDate
    lastModified
    data
  }
}
Example Response:
API returns the following result:
{
  "data": {
    "createSample": [
      {
        "id": "3f7352c9-94be-4449-aaa0-b93a3812e1c6",
        "creationDate": "2022-04-28T06:23:45.902315+00:00",
        "lastModified": "2022-04-28T06:23:46.450993+00:00",
        "data": {
          "$image": {
            "id": "3403c21e-44e1-4ea4-9e57-2d2c0933861e"
          },
          "objects@common_capturer_uld_fda": [
            {
              "id": 1,
              "age": 23,
              "bbox": [
                0,
                0.21308482869466144,
                1,
                0.9869169769287109
              ],
              "mask": {
                "value": false,
                "confidence": 1
              },
              "class": "face",
              "angles": {
                "yaw": -0.8611235618591309,
                "roll": 1.7437981367111206,
                "pitch": -15.951218605041504
              },
              "gender": "FEMALE",
              "emotions": {
                "angry": 0.013813868165016174,
                "happy": 0.002322095213457942,
                "neutral": 0.9834117889404297,
                "surprised": 0.00045228638919070363
              },
              "liveness": {
                "value": "FAKE",
                "confidence": 0.801980197429657
              },
              "keypoints": {
                "chin": {
                  "x": 0.4895579020182292,
                  "y": 0.8763695271809896
                },
                "nose": {
                  "x": 0.4884576416015625,
                  "y": 0.5780504862467448
                },
                "mouth": {
                  "x": 0.4904075113932292,
                  "y": 0.7090469868977864
                },
                "nose_left": {
                  "x": 0.3953646511501736,
                  "y": 0.5805702209472656
                },
                "left_pupil": {
                  "x": 0.30088453504774304,
                  "y": 0.4109149678548177
                },
                "mouth_left": {
                  "x": 0.33830030653211807,
                  "y": 0.6955980936686198
                },
                "nose_right": {
                  "x": 0.5848392740885416,
                  "y": 0.5861359659830729
                },
                "mouth_right": {
                  "x": 0.6333636474609375,
                  "y": 0.6958428955078125
                },
                "right_pupil": {
                  "x": 0.6891607666015624,
                  "y": 0.4170384724934896
                },
                "left_eye_left": {
                  "x": 0.21608330620659721,
                  "y": 0.4157813008626302
                },
                "left_eye_right": {
                  "x": 0.3838650173611111,
                  "y": 0.4230572001139323
                },
                "right_eye_left": {
                  "x": 0.6079323323567708,
                  "y": 0.4287389628092448
                },
                "left_ear_bottom": {
                  "x": 0.1043272230360243,
                  "y": 0.5988115437825521
                },
                "right_eye_right": {
                  "x": 0.7724110243055555,
                  "y": 0.4233682759602865
                },
                "left_eye_brow_up": {
                  "x": 0.25802788628472223,
                  "y": 0.3236322784423828
                },
                "right_ear_bottom": {
                  "x": 0.8565327962239583,
                  "y": 0.607865956624349
                },
                "right_eye_brow_up": {
                  "x": 0.7370150417751736,
                  "y": 0.3286321258544922
                },
                "left_eye_brow_left": {
                  "x": 0.1554061550564236,
                  "y": 0.3466766866048177
                },
                "left_eye_brow_right": {
                  "x": 0.3854702419704861,
                  "y": 0.3430420430501302
                },
                "right_eye_brow_left": {
                  "x": 0.6136109754774306,
                  "y": 0.345932362874349
                },
                "right_eye_brow_right": {
                  "x": 0.8359405517578125,
                  "y": 0.35814239501953127
                }
              },
              "templates": {
                "$template10v100": {
                  "id": "708a5da8-104e-4b83-9f26-ec0329e08b89"
                }
              },
              "$cropImage": {
                "id": "3cf0792f-1dde-4e8b-841a-c18330080d21"
              },
              "quality": -540.9627075195312
            }
          ]
        }
      }
    ]
  }
}
Face Verification
Query verify() is used to compare two samples and verify whether two face images belong to the same person or whether one face image belongs to the person.
verify(sourceImage: CustomBinaryType = null
sourceSampleData: JSON = null
sourceSampleId: ID = null
targetSampleId: ID!): MatchResult!
sourceImage: CustomBinaryType : Base64 encoded image 
sourceSampleData: JSON : Face detection result, not saved at the database. 
sourceSampleId: ID : Sample ID to be compared with target sample ID 
targetSampleId: ID : Sample ID to be compared with a source image, source sample data or source sample ID 
MatchResult : Verification result that contains the following parameters: 
- distance: Distance between compared vectors of biometric face templates. The lower the value, the higher the confidence in correct recognition.
- faR: False acceptance rate shows the system resistance to false acceptance errors. Such an error occurs when the biometric system recognizes a new face as previously detected one, i.e. images of different people are mistaken for images of the same person. This rate is measured by the number of false-acceptance recognitions divided by the total number of recognition attempts.
- frR: False rejection occurs when a system fails to recognize a previously detected face, i.e. two images of the same person are mistaken for images of different people. The rate shows the percentage of recognition attempts with false rejection result.
- score: Score is the probability of correct recognition. Score value of float in a range [0..1]
Incorrect input errors:
- A comparison object is not passed or an ambiguous interpreted combination is passed:
{
      "message": "One of the parameters sourceSampleData or sourceSampleId or sourceImage is required",
      "code": "0x963fb254"
}
- No sample found by transmitted id:
{
      "message": "Sample matching query does not exist."
}
- Transmitted source sample data is invalid:
{
      "message": "'objects@common_capturer_uld_fda'"
}
Example Request:
{
  verify(sourceSampleId:"fa76e8a4-3c90-4007-a72f-94d5fc655c36", targetSampleId:"a2d852e8-aa00-4403-bc5d-f8b94cc183ca")
{
  distance
  faR
  frR
  score
}}
Example Response:
API returns the following result:
{
  "data": {
    "verify": {
      "distance": 0,
      "faR": 0,
      "frR": 1,
      "score": 1
    }
  }
}
Face Identification
Profile Search
This query allows you to search for a person in the database. Function search() is used to compare one sample with all other samples in the database.
search(confidenceThreshold: Float = 0
maxNumOfCandidatesReturned: Int = 5
scope: ID = null
sourceImage: CustomBinaryType = null
sourceSampleData: JSON = null
sourceSampleIds: [ID!] = null): [SearchType!]!
confidenceThreshold: Float = 0 : To exclude matches with low confidence from the returned result, use the confidenceThreshold parameter (min: 0, max: 1; default: 0)
maxNumOfCandidatesReturned: Int = 5 : To set the max number of returned candidates, specify the value for the maxNumOfCandidatesReturned parameter (min: 1, max: 100). By default, 5 closest candidates are returned.
scope: ID : By default, a person is searched in an entire database. To get matches from a specific List, set the List id in the scope parameter. 
sourceImage: CustomBinaryType : Base64 encoded image
sourceSampleData: JSON : Face detection result, not saved at the database. 
sourceSampleIds: [ID!] : Sample IDs 
SearchType! : The result is a list of candidates for each requested sample in descending order of confidence. Search result contains the following parameters: 
- template
- searchResult- PersonSearchResult- sample: SampleOutput!(- id: ID!,- creationDate: DateTime,- lastModified: DateTime,- data: JSON!)
- profile: ProfileOutputData!(- id: ID!,- info: JSON!,- lastModified: DateTime!,- creationDate: DateTime!,- personId: ID!,- mainSample: SampleOutput)
- matchResult: MatchResult!(- distance: Float!,- faR: Float!,- frR: Float!,- score: Float!)
 
Note: the source data is compared with Profiles from the server, not with the samples. So, before you start searching, make sure you have created at least 1 profile.
Example Request:
{
  search(sourceSampleIds:"fa76e8a4-3c90-4007-a72f-94d5fc655c36"){
    template
    searchResult{
      matchResult{
        distance
        faR
        frR
        score}
      sample{
        id
      }
      profile{
        id
        info
      }
    }
  }
}
Example Response:
API returns the following result:
{
  "data": {
    "search": [
      {
        "template": "T5JnWuAN4j5MHWRP7tDj7/AOcg9S8AWw4AAQZwJAHeMRw1MUGfkxFTTVUALbWmAHBHJTBKM9LfMgwCUvXlQgAizEAzwP0BvkQDHQfykA4ZDvHrkDFhCvD3Eh73TSD+UQTMDSQBPj4DAtYBEi/wDQMH9A8PMObwQQAFHDAgMOAQHjMB+vEHc2Q/ACH/EHAw+9MPUDA+ImodYPbeKv7Q9/Xw8wD39CPQpQd/wrfwPcZRDSIgkj0PEA8L0NZNoAIdACER8Q/hAQPQAa8UDdovBN6eXBAHUwQOC7DjECPjBQ5FJBE+MNPeAB1OUPEW787jBCAsHQkBCSRXD0MHEP4E0O49IgQ7MBGyBEDyMldtHx4RT0MH9MMReb0g==",
        "searchResult": [
          {
            "matchResult": {
              "distance": 0,
              "faR": 0,
              "frR": 1,
              "score": 1
            },
            "sample": {
              "id": "805be807-dd89-4265-9ee7-bbdc19473136"
            },
            "profile": {
              "id": "fd606132-9757-419b-97d6-d8cdd67ed476",
              "info": {
                "age": 25,
                "gender": "MALE",
                "main_sample_id": "805be807-dd89-4265-9ee7-bbdc19473136"
              }
            }
          },
          {
            "matchResult": {
              "distance": 9356,
              "faR": 0.31920063495635986,
              "frR": 0,
              "score": 0.0000018477439880371094
            },
            "sample": {
              "id": "c18b3a5a-ccfb-4785-9248-b7ce90052754"
            },
            "profile": {
              "id": "218db30f-b6ff-4a46-a83d-a0701005a12b",
              "info": {
                "age": 23,
                "gender": "FEMALE",
                "main_sample_id": "c18b3a5a-ccfb-4785-9248-b7ce90052754"
              }
            }
          }
        ]
      }
    ]
  }
}
Note that if the database contains no profiles created before search start, the profile field in the returned result will be blank.
Activity Search
The searchInActivities query allows you to search for a person by activity.
searchInActivities (confidenceThreshold: Float = 0
maxNumOfCandidatesReturned: Int = 5
sourceImage: CustomBinaryType = null
sourceSampleData: JSON = null
sourceSampleIds: [ID!] = null
): [ActivitySearchType!]!
confidenceThreshold: Float = 0: To exclude matches with low confidence from the returned result, use the confidenceThreshold parameter (min: 0, max: 1; default: 0)
maxNumOfCandidatesReturned: Int = 5: To set the max number of returned candidates, specify the value for the maxNumOfCandidatesReturned parameter (min: 1, max: 100). By default, 5 closest candidates are returned.
sourceImage: CustomBinaryType: Base64 encoded image
sourceSampleData: JSON: face detection result, not saved at the database.
sourceSampleIds: [ID!]: Sample IDs 
ActivitySearchType!: The result is a list of candidates for each requested sample in descending order of confidence. Search result contains the following parameters: 
- template: String!
- searchResult: [ActivitySearchResult!]!- activity: ActivityOutput ( id: ID! , data: JSON , lastModified: DateTime! , creationDate: DateTime! , bestShotId: ID, cameraId: ID!, locationId: String, profileId: ID, status: ActivityType!, timeStart: String, timeEnd: String )
- matchResult: MatchResult! ( distance: Float! , faR: Float! , frR: Float! , score: Float! )
 
Note: The search is performed only on activities with the FINALIZED and FAILED status, for which a biometric template has been extracted.
Example Request:
{
  searchInActivities(sourceSampleIds: ["fa76e8a4-3c90-4007-a72f-94d5fc655c36"]) {
    searchResult {
      activity {
        id
        creationDate
        cameraId
        bestShotId
      }
      matchResult {
        distance
        faR
        frR
        score
      }
    }
  }
}
Example Response:
API returns the following result:
{
  "data": {
    "searchInActivities": [
      {
        "searchResult": [
          {
            "activity": {
              "id": "87c3079b-c93d-49ef-a4d6-f8a4ddb0d1a1",
              "creationDate": "2023-02-22T08:53:22.984437+00:00",
              "cameraId": "7b896604-5a11-4604-8677-742297b192ab",
              "bestShotId": "fabc0b78-054b-4169-96ec-6e39cc6f16c9"
            },
            "matchResult": {
              "distance": 7975,
              "faR": 0.026017505675554276,
              "frR": 0.004508852958679199,
              "score": 0.6593803763389587
            }
          },
          {
            "activity": {
              "id": "ac7f1848-3270-47dd-9ed4-e119f24aef68",
              "creationDate": "2023-02-22T06:29:58.757351+00:00",
              "cameraId": "49a1f363-ed9b-428f-bd98-5901dde99618",
              "bestShotId": "a47ba56d-5983-48e3-8439-d6b9231c3919"
            },
            "matchResult": {
              "distance": 8044,
              "faR": 0.030948175117373466,
              "frR": 0.004176795482635498,
              "score": 0.653989315032959
            }
          }
        ]
      }
    ]
  }
}
Incorrect input errors
- A comparison object is not passed or an ambiguous interpreted combination is passed:
{
      "message": "One of the parameters sourceSampleData or sourceSampleId or sourceImage is required",
      "code": "0x963fb254"
}
- The confidenceThreshold value is transmitted out of range:
{
      "message": "Confidence threshold must be between 0 and 1",
      "code": "0xf47f116a"
}
- The maxNumOfCandidatesReturned value is transmitted out of range:
{
      "message": "Max num of candidates must be between 1 and 100",
      "code": "0xf8be6762"
}
- Transmitted source sample data is invalid:
{
      "message": "'objects@common_capturer_uld_fda'"
}