Оценка качества изображения
Блок оценки качества изображения лица
Модификации процессинг-блока оценки качества
На данный момент существует следующие модификации:
"assessment"
- первый из реализованных режимов блока Quality Assessment, в рамках которого оцениваются следующие параметры:Параметры, оцениваемые модификацией
"assessment"
1-й версииНажмите, чтобы отобразить список оцениваемых параметров
Параметры, оцениваемые модификацией
"assessment"
2-й версииНажмите, чтобы отобразить список оцениваемых параметров
Ключевые точкиДля получения лучших результатов при оценке качества изображения с помощью модификации
"assessment"
2 версии следует использовать FACE_FITTER с модификацией tddfa или tddfa_fasterПроверкиОценка качества изображения с помощью модификации
"assessment"
2-й версии позволяет отключать некоторые проверки. Отключенные проверки не будут влиять на итоговый результатОтключаемые проверки 2-й версии модификации
"assessment"
Нажмите, чтобы отобразить список отключаемых параметров. Все параметры включены по умолчанию
"estimation"
- в данном режиме оценивается качество изображения в целом, а результат ("total_score"
) представляет собой реальное число от 0 (худшее качество) до 1 (идеальное качество).
Спецификация процессинг-блока оценки качества
Входной контейнер Context должен содержать бинарное изображение и массив объектов, полученных после работы процессинг-блоков детекции лица и фиттера:
Нажмите, чтобы развернуть спецификацию входного контейнера Context
После вызова процессинг-блока оценки качества, каждому объекту из массива
"objects"
будут добавлены атрибуты соответсвующие этому блоку.
Спецификация выходного контейнера Context:
- assessment v1
- assessment v2
- estimation
{
"quality": {
"total_score": {"type": "double", "minimum": 0, "maximum": 1},
"is_sharp": {"type": "boolean"},
"sharpness_score": {"type": "double", "minimum": 0, "maximum": 1},
"is_evenly_illuminated": {"type": "boolean"},
"illumination_score": {"type": "double", "minimum": 0, "maximum": 1},
"no_flare": {"type": "boolean"},
"is_left_eye_opened": {"type": "boolean"},
"left_eye_openness_score": {"type": "double", "minimum": 0, "maximum": 1},
"is_right_eye_opened": {"type": "boolean"},
"right_eye_openness_score": {"type": "double", "minimum": 0, "maximum": 1},
"is_rotation_acceptable": {"type": "boolean"},
"max_rotation_deviation": {"type": "long"},
"not_masked": {"type": "boolean"},
"not_masked_score": {"type": "double", "minimum": 0, "maximum": 1},
"is_neutral_emotion": {"type": "boolean"},
"neutral_emotion_score": {"type": "double", "minimum": 0, "maximum": 1},
"is_eyes_distance_acceptable": {"type": "boolean"},
"eyes_distance": {"type": "long", "minimum": 0}
"is_margins_acceptable": {"type": "boolean"},
"margin_outer_deviation": {"type": "long", "minimum": 0}
"margin_inner_deviation": {"type": "long", "minimum": 0}
"is_not_noisy": {"type": "boolean"},
"noise_score": {"type": "double", "minimum": 0, "maximum": 1},
"watermark_score": {"type": "long", "minimum": 0},
"has_watermark": {"type": "boolean"},
"dynamic_range_score": {"type": "double", "minimum": 0},
"is_dynamic_range_acceptable": {"type": "boolean"},
"is_background_uniform": {"type": "boolean"},
"background_uniformity_score": {"type": "double", "minimum": 0, "maximum": 1}
}
}
{
"quality": {
"total_score": {"type": "double", "minimum": 0, "maximum": 1},
"is_sharp": {"type": "boolean"},
"sharpness_score": {"type": "double", "minimum": 0, "maximum": 1},
"is_evenly_illuminated": {"type": "boolean"},
"illumination_score": {"type": "double", "minimum": 0, "maximum": 1},
"no_flare": {"type": "boolean"},
"is_left_eye_opened": {"type": "boolean"},
"left_eye_openness_score": {"type": "double", "minimum": 0, "maximum": 1},
"is_right_eye_opened": {"type": "boolean"},
"right_eye_openness_score": {"type": "double", "minimum": 0, "maximum": 1},
"is_rotation_acceptable": {"type": "boolean"},
"max_rotation_deviation": {"type": "long"},
"not_masked": {"type": "boolean"},
"not_masked_score": {"type": "double", "minimum": 0, "maximum": 1},
"is_neutral_emotion": {"type": "boolean"},
"neutral_emotion_score": {"type": "double", "minimum": 0, "maximum": 1},
"is_eyes_distance_acceptable": {"type": "boolean"},
"eyes_distance": {"type": "long", "minimum": 0}
"is_margins_acceptable": {"type": "boolean"},
"margin_outer_deviation": {"type": "long", "minimum": 0}
"margin_inner_deviation": {"type": "long", "minimum": 0}
"is_not_noisy": {"type": "boolean"},
"noise_score": {"type": "double", "minimum": 0, "maximum": 1},
"watermark_score": {"type": "long", "minimum": 0},
"has_watermark": {"type": "boolean"},
"dynamic_range_score": {"type": "double", "minimum": 0},
"is_dynamic_range_acceptable": {"type": "boolean"},
"is_background_uniform": {"type": "boolean"},
"background_uniformity_score": {"type": "double", "minimum": 0, "maximum": 1},
"face_width_pixels": { "type": "long" },
"face_height_pixels": { "type": "long" },
"face_size_on_image": { "type": "double", "minimum": 0, "maximum": 1 },
"is_face_size_acceptable": { "type": "boolean" },
"is_image_gray": { "type": "boolean" },
"min_image_dpi": { "type": "long" },
"is_high_resolution": { "type": "boolean" },
"image_width_to_height_ratio": { "type": "double" },
"red_eyes_right_score": { "type": "double" },
"red_eyes_left_score": { "type": "double" },
"is_red_eyes": { "type": "boolean" },
"glasses_score": { "type": "double", "minimum": 0, "maximum": 1 },
"not_has_glasses": { "type": "boolean" },
"mouth_openness_score": { "type": "double", "minimum": 0, "maximum": 1 },
"is_mouth_openness": { "type": "boolean" },
}
}
[{
"quality": {
"total_score": {"type": "double", "minimum": 0, "maximum": 1}
}
}]
Пример работы процессинг-блока
Создайте конфигурационный контейнер Context и укажите значения
"unit_type"
,"modification"
,"version"
, интересующего вас блока Пример создания процессинг-блока вы можете найти на странице Работа с процессинг-блоком.Передайте контейнер-контекст полученный после работы процессинг-блоков детекции лица и фиттера.
Вызовете процессинг-блок оценки.
Получите результат работы процессинг-блока.
- C++
- Python
- Flutter
- C#
- Java
- Kotlin
auto configCtx = service->createContext();
configCtx["unit_type"] = "QUALITY_ASSESSMENT_ESTIMATOR";
pbio::ProcessingBlock blockQuality = service->createProcessingBlock(configCtx);
//------------------
// создание процессинг-блока и контейнера Context с бинарным изображением
//------------------
faceDetector(ioData);
faceFitter(ioData);
blockQuality(ioData);
double total_score = ioData["objects"][0]["quality"]["total_score"].getDouble();
configCtx = {"unit_type": "QUALITY_ASSESSMENT_ESTIMATOR"}
blockQuality = service.create_processing_block(configCtx)
#------------------
# создание процессинг-блока и контейнера Context с бинарным изображением
#------------------
faceDetector(ioData)
faceFitter(ioData)
blockQuality(ioData)
total_score = ioData["objects"][0]["quality"]["total_score"].get_value()
ProcessingBlock blockQuality = service.createProcessingBlock({"unit_type": "QUALITY_ASSESSMENT_ESTIMATOR"});
//------------------
// создание процессинг-блока и контейнера Context с бинарным изображением
//------------------
faceDetector.process(ioData);
faceFitter.process(ioData);
blockQuality.process(ioData);
double total_score = ioData["objects"][0]["quality"]["total_score"].get_value();
Dictionary<object, object> configCtx = new();
configCtx["unit_type"] = "QUALITY_ASSESSMENT_ESTIMATOR";
ProcessingBlock blockQuality = service.CreateProcessingBlock(configCtx);
//------------------
// создание процессинг-блока оценки лица и Context-контейнера с бинарным изображением
//------------------
faceDetector.Invoke(ioData);
faceFitter.Invoke(ioData);
blockQuality.Invoke(ioData);
double total_score = ioData["objects"][0]["quality"]["total_score"].GetDouble();
Context configCtx = service.createContext();
configCtx.get("unit_type").setString("QUALITY_ASSESSMENT_ESTIMATOR");
ProcessingBlock blockQuality = service.createProcessingBlock(configCtx);
//------------------
// создание процессинг-блока оценки лица и Context-контейнера с бинарным изображением
//------------------
faceDetector.process(ioData);
faceFitter.process(ioData);
blockQuality.process(ioData);
double total_score = ioData.get("objects").get(0).get("quality").get("total_score").getDouble();
val configCtx = service.createContext()
configCtx["unit_type"].string = "QUALITY_ASSESSMENT_ESTIMATOR"
val blockQuality = service.createProcessingBlock(configCtx)
//------------------
// создание процессинг-блока оценки лица и Context-контейнера с бинарным изображением
//------------------
faceDetector.process(ioData)
faceFitter.process(ioData)
blockQuality.process(ioData)
val total_score = ioData["objects"][0]["quality"]["total_score"].double
Для точной оценки требуется только одно лицо человека в кадре, смотрящее в камеру, иначе общий балл будет низким, поскольку алгоритм учитывает относительный размер, положение и направленность головы.
Если захвачено несколько лиц, каждое из них будет обработано независимо.